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B.A. SEM–IV MATHEMATICS LESSON No. 1

THE REAL NUMBER SYSTEM
1.1. Introduction: In this lesson the concept of numbers such as natural numbers, whole

numbers, integers, real numbers etc.are given.
1.2. Objectives: Objective of studying this lesson is to give the idea how to construct

real numbers.
1.3. INTRODUCTION

An understanding of the real number system is basic to a thorough understanding of
analysis. There are several ways in which the study could be presented. Our way w a start
with the numbers, 1, 2, 3,.... (the “counting”, numbers, or “natural numbers”), to the set
of integers, and then construct the larger system of rational numbers; finally number
system could be constructed from the rationals as given in the following definition:

Definitions. 1.3.1 :
(i) The set of natural numbers is denoted by N and defined as

N = {l, 2, 3 ...}.
(ii) The set of integers is denoted by I or Z and defined as :

   Z or I = {........... – 3, – 2, – 1, 0, l, 2, 3,....}
(iii) The set of rational numbers is denoted by Q and defined as :

Q = : 0 and , Zp q p qq
    

(iv) The set of irrational numbers is denoted by Ir, and defined as :
Ir = {x | x   Q}, i.e. Ir, consists of all those numbers which are not rational.

(v) The set of real numbers is denoted by R and defined as:
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R = Q   Ir, i.e., the collection of all rational and irrational numbers is called
the set of  real numbers.

The two fundamental operations in the real number system are addition and
multiplication. They are often called binary operations because they serve to combine
two elements (numbers) in prescribed ways. The familiar operations subtraction and
division are defined in addition and multiplication respectively. We shall start with eleven
axioms, five of which (A1 through A5) describe addition, a similar five (M1 through M5)
which describe multiplication, and one (labeled D) which interrelates the two operations
in a particular way. We have:

A1. Every pair of numbers a and b in R have a unique sum a + b, which is also
in R. (Closure law for addition).

A2. For a and b in R, a + b = b + a, (Commutative law for addition).
A3. For a, b and c in R, a + (b + c) = (a + b) + c.

(Associative law for addition)
A4. There is a number 0 in R such that for each a in R, a + 0 = a = 0 + a.

(Existence of an additive identity)
A5. For every aR, there exists a number – a in R such that a + (– a) = 0 =

(– a) + a. (Existence of additive inverse).
The difference between a and b is defined as a + (– b) and the indicated operation

iscalled subtraction. Often a – b is used as an abbreviation for a + (– b). The symbol
– b  should be called “the additive inverse of b” or simply the “negative of b”.

M1. Every pair of numbers a and b in R have unique product ab, which is also
in R. (Closure law for multiplication)

M2. For a and b in R, ab = ba. (Commutative law for multiplication.)
M3. For a, b and c in R a (bc) = (ab) c. (Associative law for multiplication)
M4. There exists a number I in R, where I   0, such that for each a in R,

a.1 = a = 1.a. (Existence of multiplicative identity)
M5. For every a   0 in R there exists a number, denoted by a–1in R, such that

a.a–1 = 1 = a–1.a. (Existence of multiplicative inverse).
The quotient of a and b, (b   0), is defined as a.b–1, or equivalently, b–1. a and

the indicated operation is called division. The common way of denoting the quotient is
a
b .
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D. For a, b and c in R a (b + c) = ab = ac.
[Distributive law of multiplication over addition]

These eleven axioms are called the field axioms of real number system.
Definition 1.3.2. Any set F with two binary operations ‘+’ and ‘.’ is said to be a field

if it satisfies the laws Al – A5, M1 – M5 and D.
For example. The set Q of all rational numbers is a field under the usual operations

of addition and multiplication.
Example. The set of N of natural numbers is not a field .(because there is no additive

identity element in N).
Example. The set Z of integers is not a field under the usual addition and multiplication

compositor (why).
The real number system requires other axioms in addition to those for its complete

description,but before presenting further axioms we shall prove some theorems concerning
based only upon the axioms already stated.

Theorem 1.3.3. The cancellation law for addition :
b + a + c + a implies that b = c, for all a, b, cR.

Proof :  b + a = c + a
          ( ) ( ) ( ) ( )b a a c a a      
          ( ( )) ( ( ))b a a c a a      
                  b + 0 = c + 0
                       b = c
Theorem1.3.4. (Cancellation law of multiplication)
If x, y, zR such that xy = xz and x   0, then y = z.
Proof : As x   0, so x–1 exists. Thus  xy = xz
         1 1( ) ( )x xy x xz 
or        1 1( ) ( )x x y x x z 
                1.y = 1.z
or       y = z
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Theorem 1.3.5. There can exists at the most one identity element:
(i) for addition (ii) for multiplication

InR.
Proof: (i) If possible, suppose 0 and 0' be two real numbers such that for each xR.

x + 0 = x, x + 0' = x
Since x + 0 = x  xR, therefore in particular 0' + 0 = 0' ...(i)
Again, since x + 0' = x,  xR therefore, in particular
                                   0 + 0’ = 0 ...(ii)
From (i), (ii) and using–commutative law under addition, we have

0' = 0' + 0 = 0 + 0' = 0
Hence additive identity is unique in R.
(ii) Similar to (i) part.
It is often good idea to restate a theorem into the form of an implication in order to

make the proof move understandable. Be sure that the restatement is equivalent to the
original theorem.
1.4. EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE
Each of the following statements about real numbers is a theorem based on the eleven

field axioms. Prove each one in a manner similar to the proof of the proceeding theorems.
1. The additive identity is unique.

[Hint : Consider the restatement “if an element b has the property a+b = a for
all real numbers a, then b = 0];

2. The additive inverse of the additive inverse of a real number–b is b itself , i.e.—
(—b)=b.

3. The negative of zero is zero itself, i.e. —0 = 0.
4. The cancellation law for multiplication holds: i.e. ba = ca, and a   0 imply b=c.
5. The multiplicative inverse of a non zero number is unique.
6. The multiplicative identity is unique.
7. I–1=1
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8. (c – b) + (b – a) = c – a.
9. The additive inverse of  a + b is – a – b, i.e. –(a + b) = –a – b.

[Note that –a – b is the abbreviation for (–a) + (–b)].
10. (c + a) – (c + b) = a –b.

1.5. THE AXIOMS OF ORDER
In addition to the field axioms, the real numbers have an order relation, “>; <“ which

is based on the following axioms.
O1: Given any two real numbers a, b one and only one of the following holds:

a > b, a = b, b > a [Law of Trichotomy]
O2 : For any real numbers a, b, c if a > b, b > c, then a > c.  [Transitivity]
Q3 : For all real numbers a, b and c, a > b  a + c > b + c.

[Monotone law of addition]
O4 : For all real numbers a, b and c, a > b and c > 0    ac > bc.
The field of real numbers together with O1 through O4 is called ordered field so we

have following definition:
Definition. Any field (F, +, .) which has the properties O1, O2, O3 and O4 is called

an ordered field.
Example. Q the set of rational numbers is an ordered field.
Remark : Imposibility of Ordering the Complex numbers. The notion of linear

ordering < does not apply to complex numbers. If possible, suppose we can define an
order relation < satisfying axioms Q1 to Q5 of 1.5 . Then since i   0, we have either
i > 0 of i < 0 by axioms Q1. Assume i > 0. Then taking a = b = i in axiom Q4. we get
i.i > 0 i.e. –1  > 0. Adding 1 to both sides (axiom Q3),we get 0 > I. Again applying Axiom
Q4 to –1 > 0 and –I > 0, we see that (–1).(–1) > 0 or 1 > 0. Thus we have both 0 >
1 and 1 > 0 which contradicts axiom Q1.Similarly we cannot have 1 < 0.Hence complex
numbers cannot be ordered in such a way that axioms Q1to Q5 are satisfied.

Since | z |, R (z) and I (z) are real numbers, the statements like | z1 | < | z2 |, R (z1)
< R (z2) and I (z1) > F (z2) are meaningful. Also since | z |2 = R2 (z), it is easy to see
that | z |  | R(z) | R(z) and | z | I(z) I(z).
1.6. ABSOLUTE VALUE

Definition1.6.1. The absolute value of a real number x is written as | x |, is defined
by
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 if 0| | if 0x xx x x  
It is clear that | x | is never negative i.e. | x |  0.
Thus we always have

|x|   0
Geometrical meaning of Absolute value of x is the distance of point P from origin
i.e. If P is the position of point corresponding to real no. x, then distance from origin

O to P is | x | or OP = | x |.
Note : Also by definition

| – x | = | x |
Some theorems which are immediate consequences of the definitions will now follows

:
Theorem 1.6.2. | x | = max (x, – x)
Now    | x | = x   – x if  x   0
Also    | x | = – x > x, if x < 0
Thus in either case |x|is greater of the two numbers, x –x, i.e.,|x|= max(x,–x)
Corollary 1.6.3 | – x | = max (– x, – (– x))

= max (– x, x) = | x |
| – x | = | x |.

Corollary 1.6.4.    | x | = max (x, –x)   x
                   | x |   x,

Theorem 1.6.5. – | x | = min (x, – x)
Now  –| x | = x < x, if x > 0
Also  –| x | = (– x) x < –x, if x < 0
Thus in either case –lx| is smaller of the two numbers x and –x,
i.e. – | x | = min (x, –x)
Corollary 1.6.6. –| x | = min (x, –x)   x

 –| x |   x
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Theorem 1.6.7. If x, yR, then
(i) | x |2 = x2 = | – x |2 (ii) | xy | = | x | . | y |

(iii) | |
| y |

x x
y  , provided y   0

Proof : (i) For 2 20, | | | |x x x x x   
For 2 2 20, | | | | ( )x x x x x x     
Thus in either case 2 2| |x x
Similarly,   2 2| | ( )x x x   
Hence,  2 2 2| | | |x x x  
(ii) 2 2 2 2 2 2| | ( ) | | .| | (| |.| |)xy xy x y x y x y    
      | | | |.| |xy x y
But since | xy | and | x | . | y | are both non negative, we take only the positive sign.
      | | | |.| |xy x y

(iii) 
2 2 2 2

2
| |
| |

x x x x
y y yy

             but since x
y  and x

y  are both non–negative,
therefore taking positive square root of both sides, we have

     x x
y y , when y   0.

Theorem 1.6.8. Triangle inequalities. For all real numbers x, y, show that
(i) | | | | | y |x y x    and (ii) | | | | | y |x y x  
(i) 2 2 2 2| | ( ) 2x y x y x y xy     

2 2| | | | 2| |.| |x y x y   [ | | | |.| |]xy xy x y  
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2(| | | |)x y 
Since | x + y | and | x | + | y | are both non–negative, therefore, taking roots on both

sides,  we have
| | | | | |x y x y  

(ii) 2 2 2 2| | ( ) 2x y x y x y xy     
2 2| | | | 2| || |x y x y   [ ( ) | | | | | |]xy xy x y    

2 2(| | | | ) || | | ||x y x y   
Since | x – y | and || x | – | y || are both non–negative, therefore taking the positive

square root of both sides, we have
| | | | | |x y x y  

EXERCISE
1. | x | = 0 if x = 0
2. | x – y | = 0 if x = y
3. | x + y + z | | y | + | z |.
4. If | x – a | then a – x < a +    and x –   < a < x +  .
5. If x, y, a are reals such that | x – a | <   and | y – a | <  . Then | x – y |<

2 .
1.7. INTERVALS–OPEN AND CLOSED

A subset A of R is called an interval if A contains (i) at least two distinct elements
and (ii) every element lies between any two members of A.

Open Interval : If a and b are two real number such that a < b then the set
{x : a < x < b}

insisting of all real numbers between a and b (excluding a and b) is called an open
interval d is denoted by ]a, b[ or (a, b).

Closed Interval : The set {x : a   x   b} insisting of a, b and all real numbers
lying between a and b is called a closed interval and denoted by [a, b].
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Semi–closed or Semi–open intervals.
 ]a,b] = {x : a < x   b}
[a, b[ = {x : a   x < b}

The intervals are semi–closed or semi–open. The former is open at a and closed at
b while the latter is closed at a and open at b.

Now we define infinite intervals.
(i) The set of all real number x, satisfying x a  is denoted by [a,  ].
Thus [a,  ] = {xR : x   a}
(ii) The set of all real numbers x, satisfying x > a, is denoted by (a,  ).
Thus (a,  ) ={xR : x > a}
(iii) The set of all real numbers x, satisfying x > a, is denoted by (– , a].
Thus, (– , a) = {xR : x   a}
(iv) The set of real numbers x, is denoted by (– ,  ). Thus (– ,  ) = R.

1.8. COMPLETENESS
The properties of R. listed up till now do not enable us to distinguish between of real

numbers and the set Q of rational numbers in as much as both these sets fields.
We now propose to state one more property (and this is last property of R) which

will serves to distinguish between the sets R and Q. This property, known as order
completeness (or simply completeness) is base on the notion of an upper bound of a set
of real numbers.

Definition 1.8.1. Let S denote an non empty set of real numbers. A real number b,
where b is not necessarily in S, is called an upper boundfor S if x   b for every x in
S.

Example1.8.2. Let S = {1, 3, 5,7}. Then 7 or any number greater than 7 will serve
as an upper bounds of S.

Not all subsets of the real numbers have upper bounds.
Example1.8.3. The set S = {x/x is positive} does not have an upper bound, because

if b is an upperbound for S. then 0 < I > b, since IS. Now b + 1 > b > 0, so b +1
is positive, and therefore in S and b + 1 is greater than the proposed upper bound b. This
contradicts the definition of upper bound.

Sets which have an upper bound are said to bounded above.
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Definition 1.8.4. A real number c is called the last upper bound (abbreviated l.u.b.)
or supremum of a set S if.

(i) c is an upper bound for S, and
(ii) for any upper bound b other than c, b > c.
Example1.8.5. (i) 7 is the l.u. b of a set S (bounded above) is unique.
(ii) l is the l.u.b for the set {………….}.
Solution of Uniqueness. Suppose b and c are upper bounds for S. If b   c, then

b < c or c < b by the law of trichotomy for order relation Consequently b and c both
could not be least upper bound.
1.9. BOUNDED AND UNBOUNDED SETS : SUPREMUM, INFIMUM

A subset S of real numbers is said to be bounded above if   a real number k such
that every number of S is less than or equal to k i.e. , Sx k x  

The number k is called an upper bound of S. If no such number k exists, the set
is said to be unbounded above or not bounded above.

The set S is said to be bounded below if a real number k such that every member
of S is greater than or equal to k, i.e. , Sk x x  

The number k is called a lower bound of S. If so such number k exists, the set is
said to be unbounded below or not bounded below.

A set said to be bounded if it is bounded above as well as below.
It may be seen that if a set has one Upper bound, it has an infinite number of upper

bounds. For, if k is an upper bound of a set S then every number greater than k is also
an upper bound of S. Thus every set S bounded above determines an infinite set–the set
of its upper bounds. Similarly, a set S bounded below in a much as every member of S
is a lower bound thereof .Similarly, a set S bounded below determines an infinite set of
its lower bound, which is bounded above by the members of S.

A members g of a set S is called the greatest member of S if every member of S
is less than or equal tog, i.e.

(i) gS (ii) , Sx g x  
Similarly, a member g of the set of its smallest (or the least) member if every

member of the set is greater than or equal to g.
Clearly, a set may or may not have the greater or the least member but an upper

(lower)  bound of the set, if it is a member of the set, is its greater (least) member. A finite
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set always has the greatest as well as the smallest member.
If the set of all upper bounds of a set S has the smallest members, say M, then M

is called the  least upper bound (l, u, b) or the supremum of S.
Clearly, the supremum of a set S may or may not exist and in case it exists, it may

or may not belong to S. The fact that supremum M is the smallest of all the upper bounds
of S may be described by the following two properties.

(i) M is the upper bound of S, i.e. M, Sx x  
(ii) No number less than M can be the upper bound of s, i.e. for any positive number

  however small,   a number yS such that  y > M – 
Again it may be see that a set cannot have more than one supremum. For, let it

possibleM and M’ be two supreme of a set S. so that M and M’ are both upper bound
of S.

Also M is the l.u.b. and M is an upper bound of S.
M   M

Again M’ is the l.u.b. and M is an upper bound of S.
M’   M ...(2)

From (1) and (2), it follows that M = M’.
If the set of all tower bounds of a set S has the greatest member, say m, then m is

called the greatest lower bound (g.l.b) or the infimum of S.
Like the supremum, the infimum of a set may or may not exist and it may or may

not belong to S. It can be easily shown that a set cannot have more than one infimum.
The infimum m of a set S has the following two properties.
(i) mis the lowest bound of S, i.e. m   x,  xS
(ii) No number greater than m can be a lower bound of S, i.e. for any positive

number, however small, a number zS such that z < m +  .
1.9.1. Illustrations :
1. The set N of natural numbers is bounded below but not bounded above. 1 is a

lower bound.
2. The set I, Q and R are not bounded.
3. Every finite set of numbers of bounded.
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4. The set S1 of all positive real numbers S1 = {x : x > 0, xR} is not bounded
above, but is bounded below. The infimum zero is not a member of the set S1.

5. The inifinite set S2 = {x : 0 < x < 1, xR } is bounded with supreme 1 and
infimum zero, 1 both of which do not belong to S2.

6. The infinite set S3 = {x : 0   x   1, xQ} is bounded, with supremum 1 and
infimum 0 both of which are members of S3.

7. The set Sn= 1 : Nnn
     is bounded. The supremum 1 belongs to S4 while

infimum 0 does not.
8. Each of the following intervals is bounded : [a, b], ]a, b], [a, b[, ]a, b[.
1.9.3. COMPLENTENESS IN R.
We have already established that (R, +, ., <) is an ordered field. All these properties

of ordered l are also satisfied by the system of rational numbers. Thus we can that (Q,
–+, .,   ) is also ordered field. Now we state completeness axiom in R, which distinguishes
the system of real numbers from the system of real numbers.

Completeness axiom in R. Even non empty set S of real numbers, that is bounded
above, l.u.b in R. It is called least upper bound property of R. Due to this least upper
bound property, R, the set of reals, is said to be complete ordered field.

Now, we shall show that the property of completeness does not hold good in case
of ordered ofrational numbers.

Theorem 1.9.4. The set of rational numbers is not a complete ordered field.
Proof. In order to show that the set of rational numbers Q is not a complete ordered

field, it will coefficient to show that there exists a non empty set S of rational i.e. SQ
which isbounded but its I.u.b does not belong to Q i.e. there is no rational numbers which
is l.u.b of S.
1.10. EXAMINATION ORIENTED EXERCISE/LESSON END

EXERCISE
1. Give several real numbers which serve as upper bounds, and lower bounds, for

each of the following sets :
(a) S = {2, 7, –3, 0, 8}
(b) S = (x/x = n2 + 2 where n is a natural number less than 4}

2. Find Supremum of each of the following sets :
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(a) S = {3, 4} (b) S = 1 1 11, , , ,.....2 3 4
   

(c) S = 1 11, , ,.....3 3       
3. Find the infimum of each of the following sets :

(a) S = {12, 20}   (b) S = 1 1 11, , , ,.....2 3 4
     (c) S = 1 1 11, , , ,.....2 3 4

      
4. Which of the following sets are bounded below, which are bounded above and

which are bounded neither below nor above:
(a) {1, 2, 3, 4...} (b) {–1, –2, –3, ...}

(c) 3 4 5 12, , , ,.........,2 5 4
n

n
    (d) 3 4 5 12, , , ,.........,2 5 4

n
n

   
5. Prove that between two rationals, there lies another rational.

6. Prove that . .2
a b ab i e   arithmetic mean   Goemetric mean.

Hint : (a – b)2   0 for any real numbers a and b.
7. For any aR if a > 0, then a–1 > 0.
8. (i) Give an example of a set which is not a field.

(ii) Give an example of a field which is not an ordered field.
(iii) Give an example of afield which is not complete, justify you answer.

9. Give an example each of a set :
(i) Which is bounded above but no bounded below.
(ii) bounded below but not bounded above.
(iii) bounded.
(iv) neither bounded above nor bounded below.

10. Find l.u.b. g.l.b, if exists.
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(i) 1 : Nn nn
    (ii) 2 1 : | | 25

x xx
   

(iii) 2 : 12
x x x xx

     (iv) 2 11 4 :| | 2x x     
11. Prove following sets are bounded :

(i) ( 1) : N1
n n nn

      (ii) 2
1 : N1 nn

   
1.11. SUGGESTED READING

The students are advised to go through following references for details.
1.12. REFERENCES

(1) Real analysis by  by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.

Ltd. New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra

Brothers Pacca Danga, Jammu.
(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,

Jallandhar.
1.13. MODEL TEST PAPER

Q. 1. (i) Give an example of a set which is not a field.
(ii) Give an example of a field which is not an ordered field.
(iii) Give an example of afield which is not complete, justify you answer.

Q. 2. Give an example each of a set :
(i) Which is bounded above but no bounded below.
(ii) bounded below but not bounded above.
(iii) bounded.
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(iv) neither bounded above nor bounded below.
Q. 3. Find l.u.b. g.l.b, if exists.

(i) 1 : Nn nn
    (ii) 2 1 : | | 25

x xx
   

(iii) 2 : 12
x x x xx

     (iv) 2 11 4 :| | 2x x     
Q. 4. Prove following sets are bounded :

(i) ( 1) : N1
n n nn

      (ii) 2
1 : N1 nn

   

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 2

SEQUENCE
2.1. Introduction: In this lesson the concept of sequence of numbers is discussed.
2.2. Objectives: Objective of studying this lesson is to explain how a sequence of numbers
converges or diverges. Also the properties of these convergent sequence are discussed.
2.3. SEQUENCE

2.3.1. Definition: A sequence is a function whose domain is always the set of natural
numbers and range is a subset of R i.e. sequence is a function  f : N   A, AAR.

Notation :  Sequence is generally denoted by {fn} or {f (n)}
2.3.2. Range : Let f : N   A be a sequence, then the set {f (n) : nN} is called

a range of a sequence.
2.3.3. Example
{1, –1, 1, –1, 1, –1.............} with range = {1, –1}

1 1 11, , , ............2 3 4
     with range = 1 : Nnn

   
{1, 2, 4, 8, 16,.......} with range = {2n–1: nN}
{1 + i, 1 + 2i, 1 + 3i, 1 + 4i,.......................} is not a sequence because its range

is
{1 + ni such that nR}R

2.4. CONVERGENT SEQUENCE
A sequence {fn} is said to converge to a number I (IR), if for   > 0, , Na m 

such that  | | ,nf l n m   
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Symbolically, we write it as
lim nn f l 

2.4.1.Example : Show that 1
n
     converges  to zero

                 or

Prove that  1 0 as nn   .

Solution : Let 1 , 0nf ln  .  To show 1 0 . . . Let 0ni e f ln  

Consider  1 1 1| | 0nf l n n n    

1| | , ifnf l n  

1| | , ifnf l n  
1| | , if ,nf l n m m   

     1 0nf l n      or   1lim 0n n 

2.4.2. Example: Show that  3 4 3lim 5 2 5n
n
n
 

Show 3 4
5 2
n
n

       converges to 3
5

Solution let fn = , l =
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We show 3 4 3
5 2 5
n
n
     i.e.  nf l

Consider   3 4 3 15 20 15 6 26 26| | 5 2 5 5(5 2) 5(5 2) 5(5 2)n
n n nf l n n n n
           

26if 5(5 2)n 
if 26 5(5 2)n   

26if 5 25 n  
26if 2 55 n  
1 26if 25 5
    

1 26if 25 5n      
1 26if , 25 5n m m       

     1 26| | if , where 25 5nf l n m m        

       3 4 3or 5 2 5n
nf l n
 

2.4.3. Example. Show that  1n n    or   
1

( ) 1nn    or  
1

lim ( ) 1n
n n  .

Solution. To show 1n n 
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Let 1, 0nnf n l  

We show 0nf         1
1 ( )n nnf n n  

Raise power n to both side, we get

1 2
1 2 2(1 ) 1 (1) (1) ............n n n n

n c n c n nn f n f n f f       

  2( 1)1 ........2.1
n

n n n
n nnf f f    

In particular,
2( 1)

2 n
n nn f

2( 1)1 2 n
n f

    22
1 nfn 

or               2 2
1nf n 

      2
1nf n 

    2 2| | 1 1nf n n   

    22| | if 1nf n 

2
2if 1n  
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2
2if 1 n  

2
2if 1n  

2
2if , 1n m m   

   2
2| | if , 1nf n m m   

       2
2| 0 | if , 1nf n m m    

        0nf 

      1
( ) 0nn 

       1n n 
2.4.4.Theorem : Show that every sequence  converges to unique limit.

or
Prove that every convergent sequence converges to one and only one point.
Solution : Suppose {fn} converges to andl l , we show l l
Assume 0 | | 0l l l l l l        
Let  | |l l  . Clearly 0
As  ,nf l  so for 10, Nm    such that  1| | /2,nf l n m    ...(1)

Also,  nf l , so for 20, Nm   such that  2| | ,2nf l n m      ...(2)

Choose  1 2min ( , )k m m
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Consider    | | | ( ) ( ) |n nl l l f f l    
| | | |n nl f f l   

,2 2 n k       and using (1) and (2)


| | | |l l l l      using value of   which is not possible
Supposition is wrong.
Hence l l      {fn} converges to unique limit.
2.4.5.Exercise : Prove that  every convergent sequence bounded but converse need

not to be true.
Solution: Suppose {fn} is a convergent sequence. Let fn   l
This means, for 0 Nm   , such that  | | ,nf l n m   

,nl f l n m     ...(1)
Let  1 2 1min{ , ,...... , }mk f f f l    and    1 2 3 4 1max{ , , , ...... , }mk f f f f f l 
Clearly, using this and (1) we see that

, Nnk f k n   

     { }nf  is bounded.
(Definition of bounded sequence {see below})
Conversely, suppose {fn} = {(–1)n–1} = {–1, 1, –1,1,...........}
Clearly, {fn} is bounded  1 1, Nnf n    

But lim nn f  is either 1 or –1 which is not possible.
As sequence always converges to unique limit
    {fn} is not convergent.
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2.4.6. Bounded above Sequence  A {fn} is said to be bounded above if there exist
a real number MR such that set M, Nnf n   .

2.4.7. Bounded below Sequence  A {fn} is said to be bounded below, if there exist
a real number mR such that , Nnm f n   .

2.4.8.Bounded Sequence  A {fn} is said to be bounded below, if there exist a real
number m, MR such that M, Nnm f n    .

Example :  1 1 11, , , ,........2 3 4
     is bounded above and bounded below as, if m = –

1 and M = 1. Then 1 1, Nnf n     .
Example : { 1,–1,1,–1,1,–1,.......} is a bounded sequence as 1 1,nf n    .
Example : {1, 2, 3,.....} is bounded below as 1 , Nnf n    .
But it is not bounded above as there doesn’t exist any mR such that

, Nnm f n   .
Example : {.............–4, –3, –2, –1} is bounded above.
Here, 1, Nnf n    but there doesn’t exist Rm , such that , Nnm f n   .
2.4.9. Exercise : Suppose , ,n nf l g m   then show
(i) n nf g l m   (ii) n nf g l m  

(iii) n
n

f l
g m (iv) n nf g lm

                           or
if lim , lim ,n nn nf l g m   then

(i) lim n nn f g l m    (ii) lim ( )n nn f g l m   
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(iii) 1lim , 0n
n n

f mg m   (iv) lim n nn f g lm 

Solution : (i) To prove n nf g l m   . Let 0
Consider | ( ) ( ) | | | | |n n n nf g l m f l g m       ...(1)
As  1,nf   so for   10, , Nm    such that

  1| | ,2nf l n m    ...(2)

Also, ,ng m  so for 0, 2 Nm   such that

2| | ,2ng m n m    ...(3)
Choose K = min (m1, m2)
Use (2), (3) in (1)

    | ( ) ( ) | , K2 2n nf g l m n       

    | ( ) ( ) | , Kn nf g l m n     

     n nf g l m  
(ii) Let 0
Consider  | ( ) ( ) | | ( ) ( ) |n n n nf g l m f l g m      

| | | ( 1) ( ) |n nf l g m    
| | | ( 1) ( ) |n nf l g m     ..(1)

As  nf l  so for 10, Nm    such that
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  1| | ,2nf l n m    ...(2)

Also  ng m  so for 20, Nm    such that

2| | ,2ng m n m    ...(3)

Choose 1 2min ( , )k m m
Use (2), (3) in (1)

| ( ) ( ) | ,2 2n nf g l m n k       

| ( ) ( ) | ,n nf g l m n k     

      n nf g l m  
(iii) Let 0

Consider  n n n
n n

f f m lgl
g m g m

   n n
n

f m lm lm lg
g m

  

  
( ) ( ) ( )n n

n
m f l l g m

g m
   

  
( ) ( ) ( )n n

n n
m f l l g m

g m g m
   

( ) ( ) ( )n n
n n

m f l l g m
g m g m
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( ) ( )n n
m n

f l l g m
g g m
   

| ( ) | | || ( ) |
| | | || |
n n

n n
f l l g m
g g m
   ...(1)

As {gn} is convergent, so it is bounded, means , Rk k 
, Nnk g k n   


1 1 1

nk g k  

 1 1 1
nk g k 

        1 1 1 1
| | | |n ng k g k    use in (1)

| | | || |1
| | | || |

n n n
n

f f l l g m
g m k k m

    ...(2)

As  nf l  so for  1 1
| |0, N such that | | ,2n
km f l n m       ...(3)

Also   2, so for 0, Nng m m     such that 2
| || || | ,2| |n
k mg m n ml

   
...(4)

Let  0 1 2min ( , )m m m
Use (3), (4) in (2)

0
1 | | | | | || |

| | 2 | || | 2| |
n
n

f l k l k m n mg m k m k l
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2 2
   

       1n
n

f
g m

(iv)  Consider | |n nf g lm  | |n n n nf g f m f m lm   

 | ( ) ( ) |n n nf g m m f l   

 | ( ) | | ( ) |n n nf g m m f l   

 | | | | | | | |n n nf g m m f l    ...(1)
As {fn}  is convergent.
Sequence, so it is bounded, so , Rk k  such that , Nnk f k n   

i.e.   | | | |n nf k f k   
Use in (1)

| | | | | | | | | |n n n nf g lm k g m m f l     ...(2)
As  nf l  so for 10, Nm    such that

    1| | ,2| |nf l n mm
    ...(3)

Also ng m  so for 20, Nm    such that

  2| | 2| |ng m n mk
    ...(4)

Choose 0 1 2min ( , )m m m
Using (3), (4) in (2), we get
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     0| | | | | | ,2| | 2| |n nf g lm k m n mk m
     

2 2
   

  0| | ,n nf g lm n m   

 n nf g lm
2.4.10. Note : The converse of the above expression need not to be true i.e.
If {fn},{gn} be sequence such that their
(1) sum (2) difference       (3) product
(4) quotient  are convergent but sequences {fn},{gn} need not to be convergent.
Solution : (1) Consider {fn} = {1, –1, 1, –1,.....} and {gn} = {–1, 1, –1, 1,.....}
Clearly their sum {fn + gn} = {0, 0, 0, 0.........}   0
But neither {fn} nor {gn} is not convergent.
(2) Let {fn} ={1, –1, 1–1, 1, –1....} and {gn} = {1, –1, 1–1, 1, –1....}
Then {fn – gn} = {0, 0, 0, 0.........}   0
But neither {fn} nor {gn} is convergent.
(2) Let {fn}  = {1, –1, 1, –1, 1, –1,.............}
and     {gn} = {1, –1, 1, –1, 1, –1,.............}
and {fn – gn} = {0, 0, 0, 0...........}   0
But neither {fn} nor {gn} is convergent
(3) Take {fn} = {1, –1, 1, –1,...............}
and     {gn} = {–1, 1, –1, 1,......................}
     {fngn} = {–1, –1, –1, –1...........}   –1, as n   
But neither {fn} nor {gn} is convergent
(4) Take {fn} = {–1, 1, –1, 1,......................}
And     {gn} = {–1, 1, –1, 1,......................}
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    n
n

f
g
       = {1, 1, 1, 1,......................}   1, as n   

But neither {fn} nor {gn} is convergent.
2.5. EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE
Q.1. Prove that  every convergent sequence bounded but converse need not to be

true.
Q.2. Define convergent sequence  prove that   is convergent sequence & converging

to 1.
Q.3. Suppose ,n nf l g m  , then show

(i) n nf g l m   (ii) n nf g l m  

(iii) n
n

f l
g m (iv) n nf g lm

Q.4. If {fn}, {gn} be sequence such that their
(1) sum        (2) difference      (3) product
(4) quotient are convergent but sequence {fn}, {gn} need not to be convergent.

2.6. SUGGESTED READING
The students are advised to go through following references for details

2.7. REFERENCES
(1) Real analysis by  by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.

New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra

Brothers Pacca Danga, Jammu.
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(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

2.8. MODEL TEST PAPER
Q.1. Prove that  every convergent sequence bounded but converse need not to be

true.
Q.2. Define convergent sequence  prove that   is convergent sequence & converging

to 1.
Q.3. Suppose ,n nf l g m  , then show

(i) n nf g l m   (ii) n nf g l m  

(iii) n
n

f l
g m (iv) n nf g lm

Q.4. If {fn}, {gn} be sequence such that their
(1) sum        (2) difference      (3) product
(4) quotient are convergent but sequence {fn}, {gn} need not to be convergent.

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 3
MONOTONE SEQUENCE

3.1. Introduction : In this lesson the continuation of convergence of sequence of functions
are discussed.
3.2 Objectives : Objective of studying this lesson is to give idea of which sequence is
increasing & decreasing. Also the concept of famous Nested Interval Property/ Cantor
intersection theorem are reported in this lesson.
3.3. MONOTONE SEQUENCE

3.3.1. Monotone Increasing : A {fn} is said to be monotone increasing
If , m nn m f f 

3.3.2. Decreasing sequence : A {fn} is said to be decreasing if 1, Nn nf f n  

1     2     n     n+1
A {fn} is decreasing, if n m , then m nf f .
3.3.3. Monotone decreasing : A {fn} is said to be monotone decreasing if  n m

then .m nf f
3.3.4. Monotone : A  sequence  which is either Monotone increasing or Monotone

decreasing is called a monotone sequence.
3.3.5. Examples
1. {fn} = {n} = {1, 2, 3, 4, 5,.......} is an  increasing sequence

as f1< f2< f3< f4...........<fn< fn+1<.........
2. {fn} = {1, 2, 3, 3, 4, 5, 6, 6, 7..............} is monotonic increasing
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as f1 < f2 < f3 = f4 < f5 < f6 = f7 < f8

3. {fn} = 1 1 11, , , ,..........2 3 4
     is decreasing,

Since f1 > f2 > f3 > f4 >...............................
4. {fn} = {(–1)n–1} = {1, –1, 1, –1,.........} is neither increasing nor decreasing

because
f1 > f2 <f3> f4 <f5>................

3.3.6. State And Prove Monotone Convergence Theorem. Every Monotone
increasing bounded above sequence is always convergent

Proof: Suppose {fn} is monotone increasing & bounded above sequence. We show
{fn} is convergent.

As {fn} is Monotone increasing, so for ,n m  we have m nf f ...(1)
also {fn} is bounded above, so, let l is l.u.b of {fn}  nf l
Let  > 0
Then nf l l    ...(2)
As l –  < l so there exist so  many entries between l –  and l.
Let one of these entries be fm i.e. l –  < fm < l

 l –  < fm < l
 l –  < fm

Combine with (1), we get
 l –  < fm   fn

or  l –  < fn ...(3)
Combine (2) and (3), we have

l –  < fn < l + , n   m
       | | ,nf l n m    
 nf l
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3.3.7. Corollary : Every monotone decreasing and bounded below sequence bounded
is convergent

Proof : Let {fn} be m.d and bounded below, then {–fn} becomes monotone increasing
+ bounded above.

Hence, by above theorem {– fn} is convergent
– {– fn} is convergent implies {fn} is convergent.

3.4. CAUCHY SEQUENCE
3.4.1. Definition : Cauchy sequence : A sequence {fn} is said to be a Cauchy if 

> 0, Nm   such that  | | ,n mf f n m    
or

A {fn} is said to be Cauchy if  > 0, Np   such that | | , ,n mf f n m p     .
Notation : If {fn} is Cauchy, then lim | | 0n mnm

f f
  .

3.4.2. Example  1
n

     is Cauchy..

Solution : 1 1
n mf fn m  

,
1 1lim | | lim 0n mn n mm

f f n m 
   

Example : Take {fn} = {n2}, then it is not Cauchy.
Since 2 2

, lim | | | |n mn m f f n m     0    0

3.4.3. Example : {fn} = {–1, 1, –1, 1,......................}, then
| f1 – f2 | = | 1 – (– 1) | = 2 0
3.4.4. Theorem : Every convergent sequence is Cauchy.
Proof : Suppose  {fn} is a convergent sequence.
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Let it converges to l i.e. fn   l
This means,  >  0, Nm   such that

| | ,2nf l n m    ...(1)
As (1) is true for all n m

In particular, for n = m  i.e.  | | 2mf l   ...(2)

Consider | | | |n m n mf f f l l f    
 | | | |n nf l l f   

,2 2 n m     (Using (1) and (2))

, n m  
  {fn} is Cauchy
3.4.5. Exercise : Prove that every Cauchy sequence is bounded.
Solution : Let {fn} be a Cauchy sequence. Then for 0, Nm    such that

| | ,n mf f n m    
   ,m n mf f f n m        ...(1)

Let   1 2 1min{ , ,......... , }m mk f f f f  
  1 2 1max{ , , ......... , }m mk f f f f  

Using (1) we see , Nnk f k n   
   {fn} is bounded.

3.6. BALZANO WEIRSTRASS THEOREM
3.6.1. Statement : Every infinite bounded sequence has a convergent subsequent.
3.6.2. Theorem : Every Cauchy sequence is convergent.
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Proof : Let {fn} be a Cauchy sequence. For  > 0 Nm  such that

| | ,3n mf f n m    ...(1)
As {fn} is Cauchy sequence, so it is bounded.
Let  S = { : Nnf n  }.Then S is an infinite bounded set.
Then by B.W theorem, {fn} has a convergent subsequence say { }knf

As { knf } is convergent subsequence. So, let it converges to l i.e. knf l

Then for  > 0,  Np   such that  | | ,3kn kf l n p    ...(2)

Let If km n  from (1),  | | ,3km n kf f n n  
Consider | |nf l

| | | | | |k kn m m n nf f f f f l     

,3 3 3 n m        
    fn   l
{fn} is convergent.
3.6.3. Remark : Every bounded sequence need not to be Cauchy
Proof : Take {fn} = {(–1)n–1} = {1, –1, 1, –1,............}
Clearly, {fn} is bounded sequence as 1 1, Nnf n    
But {fn} is not Cauchy as | f1 – f2 | = | 1 – (–1) | = 2 0

3.7. NESTED INTERVAL PROPERTY OR CANTOR INTERSECTION
THEOREM

3.7.1. Nested Sequence : A sequence {In} where In= [an, bn], Nn   of closed
intervals is said to be a nested sequence if either In In+1 or In In+1, Nn  .
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3.7.2. Statement : Let {In} where In = [an, bn], Nn   be such that
(i) {In} is nested

(ii) lim | I | 0nn  , then 1
Inn


  

Proof : (i) Let {In}, where In = [an, bn], Nn   be nested
This means, In In+1, Nn 
i.e.           I1 I2 I3............ In In+1........................

    [a1, b1]  [a2, b2]  ......................  [an, bn] [an+1, bn+1] .........
From diagram, it is clear that a1 < a2 < a3............<an< an+1......................
Now, from the diagram, we see

a1 < a2 < a3 <...........< an < an+1......................< b1
i.e. an< b1, Nn     {an} is bounded above.
Since {an} is increasing and bounded above, it follows by monotone convergent

theorem {an} is converges to l
i.e.  an  l   or  lim nn a l  ...(i)

Again, from diagram, we see
b1 > b2 > b3 >.........> bn.........
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 {bn}is decreasing
Also b1 > b2 > b3 >.........  a1
    bn > a1
 {bn} is bounded below
As {bn} is decreasing and bounded below, it follows that {bn} is convergent
Let it converges to m i.e. bn   m or  lim nn b m  ...(2)

It is given lim | | 0nn l   i.e. lim | [ , ] | 0n nn a b 

lim ( ) 0n nn b a  

    lim lim 0 lim limn n n nn n n nb a a b     
(l = m)
{an} and {bn} converges to same limit
    n na l b 
    , Nn na l b n    [because convergent sequence are bounded]
    [ , ], Nn nl a b n  

   1
Inn


  

3.7.3. Example Show that 11
n

n
          is convergent and converging to e, 2 < e < 3.

                                                 or

Prove that 1lim 1 , 2 3
n

n e en
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Proof let 11
n

nf n
    

To show {fn} converges to e, we show
(i) {fn} is monotone increasing
(ii) {fn} is bounded above.

Here  11
n

nf n
    

1 2
21 21 1 1(1) (1) (1) ....... (1)n

n n n nc c cn n nn n n
                    

2 3
( 1) 1 ( 1) ( 2) 1 ( 1) ( 1)........[ ( 1)] 11 .......2! 3! ! n

n n n n n n n n n n n
n nn n n

              
1 ( 1) 1 ( 1) ( 2) 1 ( 1) ( 2)..... ( 1)1 .........2! . 3! . ! . . ......

n n n n n n n n n n n
n n n n n n n n n n

                   
1 2 1 1 2 1 1 2 ( 1)1 1 .... ....2! 3! !

n n n n n n n n n n
n n n n n n n n n n

                                                                  
1 1 2 11 1 1 1 .......... 12!

n
n n n

                       ...(1)

     2 or 2n nf f  ...(2)
Consider

1
1 1 1 1 2 1 1 21 1 1 1 1 ...... 1 1 .....2! 1 3! 1 1 ( 1)! 1 1nf n n n n n n                                           

2 1 1 21 .......... 1 1 ........ 11 ( 1)! 1 1 1
n

n n n n n
                               ...(3)
On comparing each term of fn with each term of fn+1, we see
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1 1 1 11 1 1n n n n n n       

     1 11 1 1n n   

Similarly, 2 21 1 1n n    , and so on 11 1 1
n n

n n
   

We see 1, Nn nf f n  
   {fn} is monotone increasing

Also, we know 1 21 1, 1 1n n    ,................. 11 1n
n
 

Use this in (2)
1 1 11 1 (1) (1) (1) ........ (1) (1).(1)2! 3! !nf n     

   1 1 11 1 ........2 6 !n
         ...(4)

Again  2
1 1 1 16 4 or2 4 6 2   

And so on 1
1 1
! 2nn 

Use in (4)

2 1
1 1 11 1 ........2 2 2n nf 

        

   
11 1 21 1 11 2 2

n
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       11 2 1 2n nf      

  1
13 3 { }2 nn f     is bounded ab ove.

Since {fn} is monotone increasing  and bounded above,so by monotone increasing the
sequence {fn} is convergent.

Take limn  to both side  1
1lim lim 3 32n nn nf  

     

or      lim 3nn f  ...(5)
Consider (2), (5) we see

2 lim 3nn f 

or     lim , where 2 3nn f e e   

or     1lim 1 , 2 3
n

n e en
      

    11
n

n
          is convergent, converging to e, 2 < e < 3.

3.8. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

Q.1. Prove that every Cauchy sequence converges iff it is convergent.
Q.2. State & prove Monotone convergence Theorem.

3.9. SUGGESTED READING
The students are advised to go through following references for details
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3.10. REFERENCES
1. Real analysis by  by J.N. Kapur & H.C. Saxena, S.Chand & Co.
2. Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
3. Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.

New Delhi.
4. A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra

Brothers Pacca Danga, Jammu.
5. Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,

Jallandhar.
3.11. MODEL TEST PAPER

Q.1. Define a Cauchy sequence & Show that sequence 1/n is a Cauchy sequence.
Q.2. State & prove Monotone convergence Theorem.

Q.3. Prove  that 11
n

n
        

 is convergent and converging to e, 2 < e < 3.

Q.4. Prove that every Cauchy sequence is convergent.
Q. 5. Prove that every convergent sequence is Cauchy.

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 4
INFINITE SERIES

4.1. Introduction : In this lesson the concept of infinite series of  functions are
discussed.
4.2 Objectives : Objective of studying this lesson is to familiar students about the
concept of positive infinite series..
4.3. INFINITE SERIES

A series of the type f1 + f2 + f3 +......... is called an infinite series. It is denoted by

1
orn n

n
f f

  .

If all terms of series are positive, then it is called a series of positive term.

4.3.1. Sequence of partial sum : Let  1 2 3 .................nf f f f     be infinite
series

Consider S1 = f1
S2 = f1 + f2
S3 = f1 + f2 + f3
:
:
:
Sn= f1 + f2 + f3........... + fn
:
:
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:
then {S1, S2 ,S3,.............Sn,..........} is called sequence of partial sum.

4.4. CONVERGENT SERIES
Let nf  be an infinite series with {Sn} be sequence of partial sum where

Sn = f1 + f2 + ........... + fn
We say, nf  converges to l, if {Sn} of partial sum converges to l

i.e.  if  lim S , thenn nn l f l   .

4.4.1. Example : Show that series 11
1

2nn


  is convergent

Solution : 1 2 11
1 1 1 11 ..... .......22 2 2n nn


 

     

 
11 1 2lim S lim 1 11 2 2

n
nn n 

   
 

(1 ) , 11
na r rr

     

 1lim 2 1 2nn
    

Here, Sn   2

So, series 11
1

2nn


  also converges to 2.

4.4.2. Example : Show that series 
1n
n

  is divergent.
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Solution : Here, Sn= 
1n
n

  = 1 + 2 + 3 +........... + n

S1 = 1, S2 = 1 + 2, S3 = 1 + 2 + 3
Sn = 1 + 2 + 3 +....... + n

  lim S lim (1 2 3 ...... )nn n n     

  ( 1)lim 2n
n n


 

    {Sn} diverges, so 1n
n

  also diverges.

4.4.3. Example: An infinite series 
1

n
n

u
  is convergent, then  0 as .nu n 

But converse need not to be true.
4.5. COMPARISON TEST

4.5.1. 1st comparison test
Let nu  be an infinite series

Choose, nv  such that

(i) lim n
n n

u
v   a finite number

(ii) , Nn nu v n   . Then, nu  is convergent. If nv  is converget.
4.5.2. 2nd comparison test
Let nu  be an infinite series.

Choose, nv  such that
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(i) lim n
n n

u
v   a finite number

(ii) , Nn nu v n  
Then, nu  is divergent if nv  is divergent.

4.6. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

Q.1. Show that series 
1
2

n
n

  is divergent.

Q.2. State 1st Comparison test.
Q.3. state 2nd Comparison test.

4.7. SUGGESTED READING
The students are advised to go through following references for details

4.8. REFERENCES
(1) Real analysis by  by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.

Ltd. New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra

Brothers Pacca Danga, Jammu.
(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,

Jallandhar.
4.9. MODEL TEST PAPER

Q.1. Define an infinite series & show that how it converges or diverges.
Q.2. State 1st Comparison test.
Q.3. State 2nd Comparison test.

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 5
p - SERIES TEST

5.1. Introduction : In this lesson the idea of how a series converges or diverges is
discussed.

5.2 Objectives : Objective of studying this lesson is to explain the concept of
convergence of  an infinite series.

5.3. p-SERIES TEST
5.3.1. State and prove p–Series Test

Statement : 1
1
pn n


  be an infinite series, then it converges if p > 1 and diverges if

1.p 
Proof : Case I : When  p > 1
Given series

  1 1 1 1 11 .........2 3 4 5p p p p pn      
1 1 1 1 1 11 ........2 3 4 5 6 7p p p p p p

                 ...(1)

As 3 > 2 1 13 3 3 2
p p

p p   

5 > 4 1 15 4 5 4
p p

p p   
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6 > 4 1 16 4 6 4
p p

p p   

7 > 4 1 17 4 7 4
p p

p p   
And so on use in (1)

  1 1 1 1 1 1 11 ........2 2 4 4 4 4p p p p p p pn
                

2 41 .......2 4p p
            

1 1
1 11 .......2 4p p    

1 1 2
1 11 .......2 (2 )p p     ...(2)

As series on R.H.S of (2) is a G.P series with C.R = 1
1 12 p 

So it converges, thus by 1st comparison test, series on L.H.S also converges.
Case II : When p = 1

   1 1 1 1 11 ........2 3 4 5n      
1 1 1 1 1 1 11 ...........2 3 4 5 6 7 8

                  ...(3)

3 < 4    1 1
3 4

5 < 8    1 1
5 8
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6 < 8    1 1
6 8

7 < 8   1 1
7 8    and so on

Use in (3), we get

   1 1 1 1 1 1 1 11 .........2 4 4 8 8 8 8n
                 

1 1 1 1 .........2 2 2 2
                11 2

         ...(4)

Consider  1 1 1 1 .......2 2 2 2   

Here,  1 1 1 1S ..........2 2 2 2 2n
n     

    lim S lim 2nn n
n

   
Thus, series on R.H.S of (4) diverges, so by 2nd comparison test, series on L.H.S

also diverges.
Case III : When p < 1. Then, clearly pn n

1 1
pn n    or    1 1

p nn 
Take both side, we get

1
1 1
pn nn




 

1
1
pn n


  is divergent because series on R.H.S is divergent by case II.
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Example 5.3.2. Test the convergence of the following series :

(i) 1 1 11 ...........1.4 2.5 3.6    (ii) ( 1)
( 2) ( 3) ( 4)

n n
n n n


  

Solution : (i) 1 1 11 ...........1.4 2.5 3.6   

1
1 n

n
u


  

Where  2
1 1 1

3 3( 3) . 1 1nu n n n n nn n
             

Choose 2
1nv n

2

2

1
31

lim lim 11n
n nn

nu n
v

n
 

    

Now 2
1

nv n   is convergent by p-series test.

By comparison Test nu  also convergent.
Hence, 1 + nu  also convergent.

(ii) ( 1)
( 2) ( 3) ( 4) n

n n un n n
    

3

1. 1( 1)
2 3 4( 2) ( 3) ( 4) 1 1 1n
n nn n nu n n n n n n n
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Choose 1
nv n

11
2 3 41 1 1

lim lim 1n
n nn

n
nu n n n

v
n

 


                 

1 1(1) (1) (1) 

Now, 1
nv n   is divergent by p–series test.

So, by comparing test nu  also diverges.
5.4. D–ALMBERT’S RATIO TEST

Let nu be an infinite series such that 
1

lim n
n n

u lu 


Then, series
(i) nu  is convergent if l > 1
(ii) nu  is divergent. If l < 1
(iii) Test fails if l = 1

Proof :  As 1
,n

n
u lu 

  so far  > 0, there exists mN, such that

1
,n

n
u l n mu 

   

      1
,n

n
ul l n mu 

       ...(1)
Case I : When l > 1 then 1 < 1l 
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From (1)

      1
,n

n
ul n mu 

   
Put  , 1, 2,......, 1n m m m n   
We get

1
m

m
ul u 

 

1
2

m
m

ul u



 

2
3

m
m

ul u



 
:
:

1n
n

ul u
 

Multiplying these (n – m) inequalities, we get
1 2 1

1 2 3
( ) ( )......( ) ...........m m m n

m m m n
u u u ul l l u u u u

  
  

      

   ( )n m m
n

ul u
  

( )n mn mu l u  

  (1 )
mn n m

uu   

  (1 ) (1 )
mn m n

uu     

1 1 1
1

(1 ) (1 ) (1 ) (1 )
m mn m n m nn n n

u uu  
   

           ...(2)
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Consider

2 31
1 1 1 1 .........1(1 ) (1 ) (1 )nn




            is G.P series with c.r = 1 11  

(as 1 < l –  or 1 > 1 1or 11 1     )

So this series 1
( )nl   is convergent.

Hence, series on L.H.S of (2)
nu  also convergent for l >1

Case II : When l < 1. Clearly l < l +  < 1
From (1)

1
,n

n
u l n mu 

    
Put n = m, m + 1, m + 2,...............n – 1, we get

1
n

n
u lu 

  

2
n

n
u lu 

  

3
n

n
u lu 

  
(n – m) inequalities.

:
:
:

1n
n

u lu
   





54

1 2 1
1 2 3

. . ............ ( ) ( ) ( )........( )m m m n
m m m n
u u u u l l l lu u u u

  
  

        

   ( )n mm
n

u lu
  

  ( )n mm nu u l   

   ( )
m nn m

u ul   

or    ( ) .( )
mn n m

uu l l     

1 1 ( ) .( )
mn n mn n

uu l l
 

 
     

1 1
1

( ) ( )
mn m nn n

uu l l
 

 
      ...(4)

Since 
1 1

1
( )n nn n

u l
 
 

      is a G.P series with c.r = 1
( )l    > 1

Since 11 1( )l l    
It follows by comparison test, series on L.H.S also diverges
Case III : When l = 1 (a) Let 1

nu n 
(a) Let 2

1
nu n  Here 1

nu n

2
1 2

1
1

( 1)
n

n
u n

u
n




 1
1

1nu n  
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2

2 2
2 2

11( 1)n nnn n
     1

1
lim lim 1

1
n

n nn
u n

u
n

 



2

1
1lim lim 1 1n

n nn
u

u n 
     

1limn
n

n


Here, in (a) part series in convergent.
11

lim 1n
n n

n

    
By p–series test while in (b) part series
in divergent.

But in both cases 1
lim 1n

n n
u

u 


   Ratio test fails.
Example 5.4.1 : Test the convergence of the following :

(i) 1 2! 3! 4! !.......... ........3 9 27 81 3n
n    

(ii) 21 ..........3 36 243
x x  

Solution (i)  1 2! 3! 4! ..........3 9 27 81   

Let !
3n n
nu        1 1

( 1)!
3n n
nu  


      1 1

!
3lim lim ( 1)!

3

nn
n nn n

n
u

nu  
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1! 3lim . ( 1)!3
n

nn
n

n


  
!3 .3lim 3 ( 1) !

n
nn

n
n n 

3 3lim 0 11n n    
   by ratio test, series is divergent.

(ii) Let 
1
23

n
n n

xu n
 ...(1)

    1 1 23 ( 1)
n

n n
xu n  

1
2

1
1 2

3lim lim
3 ( 1)

n
nn nn nn

n

x
u n

u x
n



  



2 1 2
2

3 ( 1) 3lim .3
n n
n nn

x n
xn x

 


 

Case I : If 3 1x   or 3 > x, then nu  is convergent.

Case II : If 3 1x   < 1 or 3 < x, then nu  is divergent.

Case III : If 3 1x   i.e. x = 3, ratio test fails
Put x = 3 in (1)

   
1
2 2

3 1
3 . 3

n
n nu n n
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 2 2
1 1 1

33nu n n   
  by p–series test, it is convergent.

5.5. CAUCHY ROOT TEST

Statement An infinite series nu  be such that 
1

lim nnn u l 

(i) then nu is convergent, if l < 1

(ii) nu  is divergent, If l > 1
(iii) Test fails if l = 1.

Proof : As 
1
nnu l , so for  > 0, there exist m such that

1 1
, ,n nn nu l n m l u l n m            

Raise power ‘n’, we get
( ) ( ) ,n nnl u l n m        ...(1)

Case I : When l < 1, clearly l < l +  < l
From (1), ( ) ,nnu l n m    

1 1
(1 )nn

n n
u 

 
    ...(2)

But  2 3(1 ) (1 ) (1 ) (1 ) ......n           
Is a G.P series with c.r. = 1 +  (<1).
Hence, from (2), series an L.H.S  nu  also converges
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Case II : When l > 1, then
Clearly 1 < l – < l from (1)

( ) ,n nl u n m    

1 1
(1 )n n

n n
u 

 
   

or     1 1
(1 )nn

n n
u 

 
    ...(3)

As R.H.S of (3) is a G.P series with c.r. l –  > 1.
So is divergent. Hence, series an L.H,S of (3) also diverges.
Case III : When l = 1

(a) Consider 2
1nu n 

Here,  2
1

nu n


11

2 1
2

1 1
( )

nnn
n

u n n
    

1
1

2
1

( )
nn

n
u

n


   
1

1/ 2
1 1lim lim 1( ) (1)

nn nn nu n   

(b) Consider 1
nu n
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1

1
1 1lim lim 11nnn n n

u
n   

Note that in (a) part series is convergent, by p-series test, while in (b) part series is

divergent. But 
1

lim 1nnn u  , which means root test fails i.e because for convergent and

divergent. series 
1

lim 1nnn u  .

Example 5.5.1. Test the following series :

(i) 
2

2( 1)
n

n
n

n  (ii) 
211

n
n

   
Solution : (i) Let 

2

2( 1)
n

n n
nu

n
  

       
2

1
1

lim lim 1
n nnnn n

nu n 
        

lim 1
n

n
n

n
    

limn
n


n 11

n

n

         
1lim 11

nn
n
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1 1 12.3e     1lim 1
n

n en
        


   nu  is convergent.

(ii) Let  
211

n
nu n

     
Here   

211
n

nu n
    

       
1 1lim lim 1

n
nnn nu n 

    
2

1
n     

11 1lim 1 lim 1
n n

n nn n


 
                 

1 1 1e e
  

   nu  is convergent.
5.6. RAABE’S TEST

An infinite series nu  be such that 
1

lim 1n
n n

un lu 
     .

Then,
1. series is divergent, if l < 1
2. series is convergent, if l > 1
3. test fails for l = 1

Proof : It is given 
1

1 ,n
n
un lu 

      means, for 0, Nm  
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such that  1
1 ,n

n
un l n mu 

        

1
1 ,n

n
ul n l n mu 

          
1

1
( ) ,n n

n
n u ul l n mu




         
Multiply by 1nu   to whole

1 1 1( ) ( ) [ ( )] ( ) ,n n n nu l n u u l u n m          
 1 1 1( ) [ )] ( ) ,n n n nl u nu nu l u n m          

Add 1nu   to whole
1 1 1 1 1 1( ) [ )] ( ) ,n n n n n n nl u u nu nu u l u u n m                

    1 1 1( 1) [ ( 1) ] ( 1) ,n n n nl u nu n u l u n m            ...(1)
Case I When l < 1. Clearly, l < l +  –1 < 0 ...(2)

    0     l    l +   1
Consider from (1)

1 1( 1) ( 1) ,n n nnu n u l u n m       
Put  , 1,......, 1n m m n  

     1 1( 1) ( 1)m m mmu m u l u     
1 2 2( 1) ( 2) ( 1)m m mm u m u l u       
2 3 3( 2) ( 3) ( 1)m m mm u m u l u       

: ( 1) ( 1)n m n m    
:
:

1 2( 1) (l 1)n nn u nu u    
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Add above (n – m) inequalities
1 2( 1)[ ....... ]m n m m nmu nu l u u u        ...(3)

We know Sn = u1 + u2 +..........+ un
  1 2 ....... .......m nu u u u     
  1 2 1....... .......m m nu u u u u     
Sn= Sm + um + 1 + um + 2 +..........+ un

   um + 1 + um + 2 +..........+ un = Sn– Sm
Use in (3), we get

( 1) (S S )m n n mmu nu l    
 (S S ) ( 1)n m m nl mu nu    

  (S S ) 1
m nn m

mu nu
l

   
S S 1

m nn m
mu nu

l
   

S , where S 1
m nn m

mu nuk k l
    

   {Sn} of partial sum is bounded below thus, series nu  is divergent.
Case II : When l > 1. Then 1 < l –  < l
Consider, from (1)     1   l –    l

1 1 1( 1) [ ( 1) ] ( 1) ,n n n nl u nu n u l u n m           
and proceed as case (1) ,we see that sequence {Sn} of partial sum is bounded above,

then series is convergent.

Case III : When l = 1.
Consider
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(a) 
2 2 2

2 2 2
1 .2 ......(2 1)
2 .4 ........(2 )

n
n
  a convergent Series

(b) 1
n  a divergent Series.

But in both the cases 
1

lim 1 1n
n n

un u 
     .

Example 5.6.1. Test the convergence of the following series :

(1) 1.3.5.....(2 1) 1.2.4.6......(2 )
n

n n


(2) 
2( !) ( )

(2 )!
nn x

n
(3) 2.4.6.....(2 )

1.3.5......(2 1)
n

n 
(4) 1 1.3 1.3.5 ...........2 2.4 2.4.6  

(5)  2 2 2 2 2 22 4 6 82 2 4 2 .4 .6 ..........3.4 3.4.5.6 3.4.5.6.7.8x x x x  

(6)  3 5 71 1.3 1.3.5 ..........2 2 2.4 5 2.4.6 7
x x x     

Solution : (1) Let 1.3.5.....(2 1) 1.2.4.6......(2 )n nu n n
 

   1.3.5.....(2 1) 1.2.4.6......(2 )n
nu n n


    1
1.3........(2 1) (2 1) 1.2.4.......(2 ).(2 2) 1n

n nu n n n    
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1
lim 1n

n n
un u 

   

1.3.......(2 1) 1.2.4.......2lim 11.3.......(2 1) (2 1) 1.2.4.......(2 ).(2 2) 1
n

n
n nn n n

n n n


         
(1.3......2 1) (2.4......2 ) (2 2)( 1)lim 1(2.4.......2 ) . (1.3......(2 1) (2 1)n

n n n nn n n n n
       

(2 2)( 1)lim 1(2 1)n
n nn n n

     
22limn

nn 22 2 2 2n n n    n
n


(2 1)n

    
3 2lim (2 1)n
n
n

    
Use L.H rule

3 12 

      nu   is convergent.

(2) Let 
2( !)

(2 )!
nn nu xn 

( !)
(2 )!

nn nu xn
   ....(1)

       
2 1 2

1
[( 1)!) [( 1). !] .[2 ( 1)]! (2 2)!

n nn
n x n nu x xn n
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2 2( 1) ( !) .(2 2) (2 1) (2 )!

nn n x xn n n
   , we use ratio test

     

2

2 21

( !)
(2 )!

( 1) ( !) .(2 2) (2 1) (2 )!

n
n

n n

n x
u n

u n n x xn n n


 
 

  
2( !)n (2 2) (2 1) (2 )!nx n n n 

(2 )!n 2 2( 1) ( !) .n n x x

  
2

2 22

2 12 2(2 2) (2 1) 4
( 1) . 11 .

nn n n n
xn x n xn

                 

Case I : If 4
x  > 1 or 4 > x  or  x < 4, then nu  is convergent.

Case II : If 4
x  < 1 or 4 < x or x > 4, then nu  is divergent.

Case III : If 4
x  < 1 or x = 4. Then ratio test fails.

Put x = 4 in (1),  
2( !) 4(2 )!

nn nu n
We get Raabe’s test

   21 1

( !) 4(2 )!
[( 1)!] 4[2 ( 1)]!

n
n

n n

n
u n

u n
n
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2
2 1

( !) 4 (2 2)!
(2 )! [( 1) !] 4

n
n

n n
n n n 

 
2( !) 4nn (2 )!n

(2 2) (2 1) (2 )!n n n 
2 2( 1) ( !) 4 .4nn n

2
(2 2) (2 1)

4 ( 1)
n n

n
  

21
(2 2) (2 1)1 14( 1)

n
n
u n n

u n
   

2 2
2 2

4 6 2 4 ( 2 1) 2 2
4( 1) 4 ( 1)

n n n n n
n n

        

   2 21 2

2( ) 22 21 4( 1) 14 1
n

n

n nu n nn nu n n n


                   

 21

22 1lim 1 lim 1214 1
n

n nn
u nn u

n
 

                   
By Raabe’s Test is divergent.

(6) 3 5 71 1 3 1.3.5. . . ..........2 3 2 4 5 2.4.6 7
x x x  

Let  
2 11.3.5......(2 1)

2.4.6......(2 ) (2 1)
n

n n xu n n
  ...(1)
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2 3 2 3

1
1.3.5......(2 1) 1.3.5.....(2 1) (2 1)
2.4.6......(2 2) (2 3) 2.4.6......(2 ) (2 2) (2 3)

n n
n

n x n n xu n n n n n
 

       

   

2 1

2 31

1.3.5.......(2 1)
2.4.6.......(2 ) (2 1)

1.3.5.........(2 1) (2 1)
2.4.......(2 ) (2 2) (2 3)

n
n nn

n x
u n n

u n n x
n n n






  

 
2 1

2 1 2 2
1.3.5.......(2 1) 2.4.......(2 ) (2 2) (2 3) (2 2) (2 3).2.4.6.......(2 ) (2 1) 1.3.5......(2 1) (2 1) (2 1) (2 1)

n
n

n x n n n n n
n n n n x x n n x




         
...(1)

22

2 32 1 2 1 12 2 as1 12 1 2 12 2

n nn n nxn n xn n

                       

Case I : If 2
1
x  > 1, then nu  is convergent.

Case II : If 2
1
x  < 1, then nu  is divergent.

Case III : If 2
1
x  = 1 or x2 = 1, Ratio test fails 1

(2 2) (2 3)
(2 1) (2 1)

n
n
u n n

u n n
   

   1
(2 2) (2 3)lim 1 lim 1(2 1) (2 1)

n
n nn

u n nn nu n n 
             

     
2 24 6 4 6 4 4 1lim (2 1) (2 1)n

n n n n nn n n
           

6 5lim lim(2 1) (2 1)n n
nnn n n 

     
(6 n 5) 1 6

2
n

n

   
11 22 nn

   
11 2n
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6 3 14 2  

By Raabe’s Test nu  is convergent.
5.7. EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE
Q.1. Test the following series :

(i) 
2

2( 1)
nn

n n (ii) 211 nn
   

Q.2. Test the convergence of the following

(i) 1 2! 3! 4! !......... ........3 9 27 81 3n
n     

(ii) 
3 5 7 2 1.......... ..........3! 5! 7! (2 1)!

nx x x xx n
    

Q.3. State and prove p-series test.
Q.4. State and prove ratio test

5.8. SUGGESTED READING
The students are advised to go through following references for details

5.9. REFERENCES
(1) Real analysis by  by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.

Ltd. New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra

Brothers Pacca Danga, Jammu.
(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,

Jallandhar.
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5.10. MODEL TEST PAPER
Q.1. Test the following series :

(i) 
2

2( 1)
nn

n n (ii) 
211

n
n

   
(iii) 1 2! 3! 4! !......... ........3 9 27 81 3n

n    

(iv) 
3 5 7 2 1......... .......3! 5! 7! (2 1)

nx x x xx n
    

Q.2. State and prove Ratio test.
Q.3. State and prove p-series test.
Q.4. State and prove Raabes test.
Q.5. Test the conversion of the following series :

(i) 
2( !) ( )

(2 )!
nn x

n (ii) 1.3.5......(2 1) 1.2.4.6.......(2 )
n

n n


(iii) 2.4.6......(2 )
1.3.5.......(2 1)

n
n 

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 6
ALTERNATE SERIES

6.1. Introduction : In this lesson the concept of alternate series are discussed.
6.2 Objectives : Objective of studying this lesson is to explain concept of
convergence of alternate  & absolute series.
6.3. ALTERNATE SERIES

A series  of the type

1 1 2 3 4
1
( 1) ........., each 0n n n

n
u u u u u u 


      

Is called an alternative series.

Example 6.3.1. (i) 1–3 + 5–7 +..............      (ii) 2 3
1 1 11 ............2 2 2   

6.3.2. Lebnitz Test : An alternate series

1 1 2 3 4
1
( 1) .........n n

n
u u u u u 


       is such that

(1) 1 2 3 1........ ......... . .{ }n n nu u u u u i e u      is decreasing.
(2) 0 asnu n   . Then 1( 1)n nu  is convergent.

Proof : Let {Sn} be sequence of partial sum of series 1( 1)n nu
Consider S2n = 1 2 3 4 2.......... nu u u u u    ...()
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Also,   S2n+1 = 1 2 3 4 2 2 1( .........., ) un nu u u u u     
     S2n+1 = S2n + u2n+1 ...(1)

    S2n+1 – S2n > 0         u2n+1> 0
 S2n+1   S2n > 0

or  {S2n} is increasing sequence.
From ()

S2n = 1 2 3 4 2 1( ................... )nu u u u u u    
    S2n < u1
   {S2n} is bounded above.
Thus {S2n} is increasing and bounded above, so by Monotone convergence theorem,

{S2n} converges.
Let S2n   S (say) i.e.  limn  S2n = S
From (1)

2 1 2 2 1lim S lim S lim S 0n n nn n n u                  lim 0 by (2)nn u
   

2 1 2 1lim S S S Sn nn     

Hence  2 1 2 2S S, S S S Sn n n    
i.e.   Partial Sum {Sn} of 1( 1)n nu  also converges.

    1( 1)n nu  is convergence Series.
Example 6.3.3. Test the convergence of following :

(1) 1
2 3 4
1 1 11 ..............( 1) ..........2 43

n     

(2) 2 3 4
1 1 1 11 ..............2 2 2 2   
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(3) 1 1 1 1 .............log 2 log 3 log 4 log 5   

(4) 11 1 1 ( 1)1 .............3 5 7 2 1
n

n
     

(5)  2 – 4 + 6 – 8 +.......................

Solution :  (1) 2 3 4 1 1 1
2 3 4

1 1 1 1 1 11 ......... 12 43 (2) (4)(3)
       

(a) 1 2 3 .................u u u  

(b) 1
1lim lim 1

( )
nn n n

u
n   0

Since 2nd condition of Lebnitz test fails, we can’t apply Lebnitz test to this series

(2) 1
3 11

1 1 1 11 ............ ( 1)2 2 2 2
n

nn

  
     

(a) Clearly 1 2 3 .................u u u  

(b) 1
1lim lim 02n nn nu   

As above series satisfies both conditions of Lebnitz test so given series is convergent

(3) 11 1 1 1 1............. ( 1) ..........log 2 log 3 log 4 log 5 log ( 1)
n

n
      

Hence (a) 1 2 3 ......u u u  

    (b) 1lim lim 0log ( 1)nn nu n  
As above series satisfies both conditions of lebnitz test so given series is convergent.
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(4)  Same as (i) Part.
(5) 2 – 4 + 6 – 8 +..........

un = 2 – 4 + 6 – 8 + .........(2n)............
1 2 3u u u   ............................means 1st condition of Lebnitz test fails, so we

cant apply Lebnitz test to this series.
6.4. ABSOLUTELY CONVERGENT SERIES

Definition 6.4.1. An Alternate series

1 1 2 3 4
1
( 1) .............n n

n
u u u u u t 


    

is said to be absolutely convergent series if series 1( 1)n nu
1 2

1 1
| ( 1) | | |n n

n n
u u 

 
     converges.

Example 6.4.2. Prove that every absolutely convergent series is convergent but not
conversely.

Solution : Let 1( 1)n nu  be an absolutely convergent series.

This means 1| ( 1) |n nu  is convergent.

or    1 1 2 3
1 1

| ( 1) | | | | | | | .......n n
n n

u u u u 
 

        is convergent.

Now       1 1 2 3 4
1
| ( 1) | | ....... |n n

n
u u u u u 


     

1 2 3| | | | | | ........u u u    

1
| |n

n
u
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Since R.H.S 
1
| |n

n
u

  is convergent so in L.H.S

Thus series 1( 1)n nu  is convergent.
Converse of above result need not to be true.
6.4.3. Example of a convergent series which is not absolutely convergent.

Let 1 1 1 1 1( 1) 1 ...........2 3 4
n

n
     

Then by Lebnitz test, 1 1( 1)n
n

  is convergent.

But 1 1 1 1 1( 1) 1 .............2 3 4
n

n
     

 1
n  is divergent by p–sries test.

Remark : A series which converges but not absolutely is called conditional convergent
series.
6.5. EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE
Q. 1. Test the convergence of following :

(1) 1
2 3 4
1 1 11 ..............( 1) ..........2 43

n     

(2) 2 3 4
1 1 1 11 ..............2 2 2 2   

(3) 1 1 1 1 .............log 2 log 3 log 4 log 5   

(4) 11 1 1 ( 1)1 .............3 5 7 2 1
n

n
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(5)  2 – 4 + 6 – 8 +.......................
6.6. SUGGESTED READING

The students are advised to go through following references for details
6.7. REFERENCES

(1) Real analysis by  by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.

New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra Brothers

Pacca Danga, Jammu.
(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,

Jallandhar.
6.8. MODEL TEST PAPER

Q.1. Prove that every absolutely convergent series is convergent but not conversely.
Q.2. State and prove Lebenitz test.
Q.3. Test the convergence of following :

(i) 
11 1 1 ( 1)1 .............. ..........2 2 3 3 4 4

n
n n

    

(ii) 2 3 4
1 1 1 11 ..............2 2 2 2   

(iii) 1 1 1 1 .............log 2 log 3 log 4 log 5   
Q.4. Give an example of a convergent series which is not absolutely convergent.

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 7
CONTINUOUS FUNCTIONS

7.1. Introduction : In this lesson the concept of continuity of functions are discussed.
The concept is explained in a simpler way.
7.2. Objectives : Objective of studying this lesson is to give the idea of continuity of
functions both in algebraic & graphical forms.
7.3. INTRODUCTION

First we shall introduce the concept of limit of a function whose domain is an
interval and whose range is contained in R.

7.3.1. Definition of Limit : A number  l  is said to be the limit of f (x) at x = a
iff for any arbitrarily chosen positive number , however small but not zero, there exists
a corresponding number  greater than zero such that

| f (x) – l | < 
for all values of x for which 0 < | x – a | < .
Meaning of | x – a | < .
Since | x – a | means the absolute value of x – a without regard to sign, the inequality

| x – a | < , means that the difference between x and a taken positively, is less than .
Thus

(i) if x > a, then  x – a < .
(ii) if x < a, then a – x < .
In other words, if x > a, then x < a +  and if x < a, then x > a – .
Hence | x – a | < means that x can be assigned any value between a –  and a

+ 
Right hand and left hand limits.
If x approaches a from right, that is, from values of x greater than a, the limit of
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f as defined above is called the right hand limit on f (x) and is written as :

0lim ( ) or ( 0) or lim ( )x a x af x f a f x  
Formally we may define Right hand limit as under :
“A function f (x) is said totend to a limit l through right hand if for any arbitrarily

chosen  positive number e however small, but not zero, there exists a corresponding >
0 such that

| ( ) |f x l  
for all values of x such that a < x < a + ”.
The working rule for finding the right hand limit is : Put x = a + h in f (x) and make

h approach zero.
Similarly if x approaches a from the left, that is, from values of x smaller than a,

the limit  of f in that case is called the Left hand limit and is written as

0lim ( ) or ( 0) or lim ( )x a x af x f a f x  
formally  we may define Left hand limit as under :
A function f (x) is said to tend to limit l through left hand iff for any arbitrarily

chosen positive  number however small but not zero, there exists a corresponding number> 0 such that a – < x < a.
Remark 7.3.2. The limit of the function f (x) is said to exist if both right hand and

left hand limits exist and are equal i.e.

0 0lim ( ) lim ( )x a x af x f x l    
The common value is called the Limit of the function and is written as :

0lim ( )x a f x l  
(2) In case of Left hand limit is not equal to the right hand limit, the limit of the

function does not exist. Also the limit of the function does not exist if either one both of
these limits donot exist.

EXAMPLE 7.3.3. (1) Let a function f be defined as
 f (x) = –1 when x < 0
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       = 0 when x = 0
    = 1 when x > 0

Then 0 0 0 0lim ( ) 1 and lim ( ) 1x xf x f x     

Here 0 0 0 0lim ( ) lim ( )x xf x f x   
     0lim ( )x f x   does not exist.
(2) Let a function f be defined as

f (x) = 
1 2 when 0

0 when 0
1 3 when 0

x x
x

x x

    
Then  

0 0 0 0lim ( ) lim (1 2 ) 1x xf x x     

    0 0 0 0lim ( ) lim (1 3 ) 1x xf x x     

Here   0lim ( ) 1x f x  .
7.3.4. Algebra of Limit : Let f and g be two functions with a common domain D

and whose ranges are in R.
The sum of the function f and g is the function f + g defined on D by setting
(f + g) (x) = f (x) + g (x) for all xD.
Also, the product of the functions f and g is the function fg define on D by setting
(fg) (x) = f (x) . g (x), for all xD.
Again, if c be any real number, the scalar product off by c is the function cf defined

by setting (cf) (x) = cf (x), for all xD.

Further, if g (x)   0 whenever xD1, then the reciprocal of g is the function 1
g

defined on D1 be setting 1 1( ) ( )xg g x
     , for all xD1.
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Finally, if g (x)   0 whenever xD1,  D, then the quotientis f
g  the function

defined on D1 by setting ( )( ) ( )
f f xxg g x

     , for all xD.
We shall now study the relation between the limits of two functions and the limits

of their sum, product etc.
Theorem 7.3.5. The limit of a sum is equal to the sum of the limits.
Proof. Let us assume, and lim ( ) and lim ( ) .x a x af x l x m   

Then we have to prove that lim [ ( ) ( )] .x f x x l m    
We have only to show that for any preassigned positive number , a number can

be determined such that
| ( ) ( ) |f x x l m     

whenever x lies in the interval [ , ].a a   
Now by hypothesis lim f (x) = l so that

1| ( ) | , whenever 0 | |2f x l x a      ...(1)

Similarly, 2| ( ) | whenever 0 | |2x m x a       ...(2)
Choosing  to be smaller of the number 1and 2, it follows from (1) and (2) that
     | ( ) ( ) | | ( ) ( ) |f x x l m f x l x m        

| ( ) | | ( ) |f x l x m    

2 2
   

When 0 | |x a   
Hence  lim [ ( ) ( )]x a f x x l m    
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the same way we can prove that lim [ ( ) ( )]x a f x x l m     .
Theorem 7.3.6. The limit of a product is equal to the product of the limits.
Proof : Using the notation of theorem I, we have to prove in this case that

| ( ) . ( ) |f x x lm    whenever 0 | |x a    .
Now     | ( ) . ( ) | | ( ) . ( ) ( ) ( ) |f x x lm f x x l x l x lm        

| ( ) . ( ) ( ) | | ( ) |f x x l x l x lm      
| ( ) || ( ) | | | | ( ) |x f x l l x lm     

By hypothesis lim ( ) and lim ( )x a x af x l x m     in so   that is surely bounded in
the neighborhood of x = a.

Hence | ( ) |x  < M for all value of x such that 0 < | x – a | < .
Then | f (x)  (x) – lm | < M | f (x) – l | + | l | |  (x) – m |.
Since lim ( ) and ( )x a f x l x m    , coressponding to any  > 0, we can find a

positive  number < such that | ( ) | and | ( ) |2M 2| |f x l x m l
       whenever

0 | |x a    .
Hence  ( ) ( ) .f x x lm 
Theorem 7.3.7. The limit of  quotient is equal to the quotient of the limits provided

the limit of the denominator is not zero.
Proof : Let  lim ( ) and lim ( ) 0x a x af x l x m    

Now ( ) ( ) ( ) ( )
( ) ( )

f x l f x f x f x l
x m x m m m     

| ( ) | 1. { ( )} { ( ) }| || ( ) |
f x m x f x lm x m    
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| ( ) | 1| ( ) | | ( ) || || ( ) | | |
f x m x f x lm x m     ...(1)

By hypothesis lim ( ) and lim ( ) .x a x af x l x m     Hence the functions f and  are
surely bounded in the neighborhood of the point x = a. Let M be the upper bounded of
| f | and N be the lower bounded of |  | so that | f (x) |< M and |  (x) | > N.

We may then write (1) as
( ) M 1| ( ) | | ( ) |( ) N | | | |

f x l m x f x lx m m m      ...(2)

Since lim ( ) and lim ( ) ,x a x af x l x m     corresponding, to any  > 0, we can find
number 1and 2 such that

| ( ) | | | 2f x l m        whenever 10 | |x a   

and       N| ( ) | | | .M 2x m m     whenever 20 | |x a   
Choosing  to be smaller than 1 and 2, we see from (2) that

( )
( ) 2 2

f x l
x m

      whenever  0 | |x a    .

Hence ( ) 1lim ( )x a
f x

x m  , provided 0.m .

7.4. SOME IMPORTANT LIMITS
The following limits should be committed to memory by the students.

(A) 0
sinlim 1

  , when   is measured in radians.

(B) 
1

0
1lim 1 and lim (1 )

x y
x ye y ex 
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(C) 0
log (1 )lim 1x

x
x
 

(D) 1lim n n n
x c

x c ncx c



 

EXAMPLE 7.4.1. The function f defined on [0, 1] by
1( ) , ]0, 1]f x xx 

is continuous on ]0, 1].

Solution. Let c]0, 1] be arbitrary. Take 1 02
c    such that

1
3| | 2 2 2

c c cx c x      

This gives  2 2
2 1 2(1) 3 cxc c 

Let  > 0 be given.

Then  1 1 | || ( ) ( ) | x cf x f c x c cx
   

  2
2 | |x cc 

  2if | | 2
cx c    

If we choose  2min ,2
c       

Then, we have  | ( ) ( ) |f x f c   whenever | | .x c 
Hence f is continuous at c. Since c[0, 1] is arbitrary, it follows that f is continuous

on [0, 1].
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7.5. DISCONTINUITY CRITERION
Let f be a real valued function defined on I R and cI. Then f is discontinuous

at c if and only if there exists a sequence <Xm> in l with, lim nx c x c  such that
lim ( ) ( ).nx c f x f c 

7.5.1. Kinds of Discontinuities : (1) A function f is said to have a removable
discontinuity at a point a iff lim ( )x a f x  exists but is not equal to f (a), i.e., ifff

f (a + 0) = f (a – 0)   f (a).
In such a case the function may be made continuous by defining it in such a way

that
    ( ) lim ( )x af a f x
(2) If f (a + 0) and f (a –0) both exist and not equal, then we say that it has a of

the first kind at a.The point a is said to be a point of discontinuity from the left or right
as  ( 0) ( ) ( 0) or ( 0) ( ) ( 0)f a f a f a f a f a f a        .

(3) A function f is said to have a discontinuity of second kind at a iff none of f (a
+ 0) and f (a – 0) exists.

A point a is said to be a discontinuity of the second kind from the left or right
according as f (a + 0) and f (a – 0) exists.

Example7.5.2. Test the continuity of the function  f (x) = 
1sin , 0
0, 0

x xx
x

  
.

Solution. Here f (0 + 0) = 0
1lim (0 ) sin 0h h h  

= 1sin 0h h   a finite quantity

= 0 [  sin 1
h

     is bounded lying between – 1 and 1]
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Similarly f (0 – 0) = 0
1lim (0 )sin 0h h h  

0 0
1 1lim (0 ) sin lim sin 00h hh hh h     , as before.

Also f (0) = 0.

Since f (0 + 0) = f (0 – 0) = f (0), the function x sin 1
x  is continuous at x = 0.

Example7.5.3. Show that the function defined as

0, for 0
1 1, for 02 2( ) 3 1, for 12 2

1, for 1

x
x x

x
x x

x

         
has three points of discontinuity which you are required to find.

Solution. We test the function for continuity at x = 0, 1
2  and 1.

For x = 0, we have  (0) = 0, 0
1 1(0 0) lim (0 )2 2h h
        

Since (0) (0 0),     the function is discontinuous at x = 0.

For x = 1
2 , we have

    0
1 1 1 10 lim 02 2 2 2h h

                        

0
1 3 10 lim 12 2 2h h
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Since 1 1 10 0 ,2 2 2
                       the function is discontinuous at 1(1) .2x  

Finally, we consider x = 1. We have

0
3 1(1) 1, (1 0) lim (1 )2 2h h
          

Since (1 0) (1)    so the function is discontinuous at x = 1.

Hence the function is discontinuous at 10, 2x  , and 1.
7.6. EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE
Q.1. Let a function f  be defined as

F (x) = 
1 2 when 0

0 when 0
1 3 when 0

x x
x

x x

    
Is F continuous function.

Q.2. Prove that sum of two continuous functions is continuous.
Q.3. Prove that product of two continuous functions is continuous.

7.7. SUGGESTED READING
The students are advised to go through following references for details.

7.8. REFERENCES
(1) Real analysis by  by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.

New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra Brothers

Pacca Danga, Jammu.
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(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

7.9. MODEL TEST PAPER
Q.1. Prove that every continuous function is bounded.
Q.2. Give an example to show that a bounded function may not be continuous.
Q.3. Prove that sum of two continuous functions is continuous.
Q.4. Prove that quotient of two continuous functions is continuous.

Q.5. Show that the function defined as 

0 for 0
1 1for 02 2( ) 3 1for 12 2

1 for 1

x
x x

x
x x

x

         
has three points of discontinuity.

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 8
THEOREMS ON CONTINUITY

8.1. Introduction : In this lesson the properties  of continuity of functions are discussed
in the form of theorems.
8.2 Objectives : Objective of studying this lesson is to explain continuity in different
approach in the form of results.
8.3. THEOREMS ON CONTINUITY

Theorem 8.3.1. The necessary and sufficient condition for a function f defined on
I R to be continuous at aI is that for each sequence <an> which converges a, we have

limn f (an) = f (a).
Proof : Let f be continuous at aI and let <an> be a sequence such that

  lim nn a a 
Since f is continuous at a, for given  > 0, we can find > 0 such that

    | | | ( ) ( ) |x a f x f a      ...(1)
Again since lim ,nn a a   there exists a positive integer m such that

  | |nn m a a     ...(2)
Setting x = an in(1), we get

   | | | ( ) ( ) |n na a f a f a     
From (2) and (3), we get

   | ( ) ( ) |nn m f a f a   
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Hence  lim ( ) ( )nn f a f a 
Conversely, suppose for every sequence <an> converging to a, we have

lim ( ) ( )nn f a f a 
Then we shall show that f is continuous at a. If possible, let f be not continuous at

a. Then there exists > 0 such that for every > 0 there is an  such that
| | but | ( ) ( ) |x a f x f a    

If we take 1
n  , we see that for each positive integer n, there exists {an} such that

1| | but | ( ) ( ) |n na a f a f an   
Then lim but lim ( ) ( )n nn na a f a f a  
But this is a contradiction.
Hence function must be continuous at x = a.
8.3.2.Definition (Bounded). If the range of a function f is a bounded set, that is if

both upper and lower bounds of the function exists and are finite, then the function is said
to be bounded.

Equivalently, if there exists a number M > 0 such that | f (x) | < M for all x, then
f is said to be a bounded function.

Theorem 8.3.3. If f is continuous in the closed interval [a, b], then
(1) f is bounded in [a, b]
(2) f attains its supremum and infimum at least once in [a, b].
Proof : (1) Since f is continuous in [a, b] so, for a given  > 0, we can subdivide

the interval into a finite number n of sub–intervals such that
1 2| ( ) ( ) |f x f x   ...(1)

for any two points x1, x2 in the same sub–interval. Let x be any point in the first
sub interval [a, a1]. Then by (1) we have
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2| ( ) ( ) |f a f x  
that is, f (x) lies in the interval f (a) –  and f (a) + . In the same way, all the

values f (x) in the first two sub–intervals will lie between f (a) – 2 and f (a) + 2,
and so on.Hence all the values of f (x) in the interval [a, b] will lie between f (a) – nand f (a) + n. Thus f is bounded in [a, b].

Note 8.3.4. The converse of the above result is not true, i.e. a bounded function in
[a, b] need not be continuous in [a, b]. For example, the function

1sin 0( )
0 0

for xxf x
for x

        
is bounded in [0, 1] but not continuous in [0, 1], since it is discontinuous at x = 0
Proof (ii) : Let M be m be the supremum and infimum of f in [a, b] respectively.

We shall show that f attains its supremum M at least once in this interval, i.e. there exists
a point x in [a, b] such that f (x) = M. Suppose it does not, then M   f (x) or M – f
(x)   0 for any x in [a, b].

Let us define a function g on [a, b] by setting

g (x) = 1
M ( )f x  for all x[a, b].

Since f is continuous on [a, b], therefore, g is also continuous on [a, b]. As every
continuous function defined on a closed interval is bounded, therefore, there exists a
positive real number k such that g(x)   k for all x[a, b]. [It means k is an upper bound
of g) i.e., g (x) for all x[a, b].

This means that f (x)   M – 1
k  for all x [a, b], so that M – 1

k  is an upper bound
o f
f (x). This contradict the fact that M is the supremum of f, and consequently there must
exists some x in [a, b] such that M – f (x) = 0.

Hence f (x) = M for atleast one value of x in [a, b]. Similarly it can be proved that
f attains its infimum at least once in [a, b].
8.4. UNIFORM CONTINUITY

Recall the definition of continuity where f depends not only on  but also on the
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point catwhich the continuity is defined. Now  depends on the point c means that the
change in the values of the function near some point may be different from other points.

Definition 8.4.1. A function f defined on an interval I R is said to be uniformly
continuous on l if for each  > 0 there exists a =  () > 0 such that | f (x) – f (y)
| < , whenever | x – y | <  and x, yI.

Examples 8.4.2. Consider the function f (x) = x2, x[–1, 1].
Solution. Let x, y[–1, 1] be any two points.
Then   2 2| ( ) ( ) | | | | | | | 2 | |f x f y x y x y x y x y       

( , [ 1, 1] | | 1 and | | 1)x y x y    

     | ( ) ( ) | , if | | 2f x f y x y     

Thus, for any  > 0 there exists 02
    such that

| f (x) –f (y) | < , whenever | x – y | < .
Hence f is uniformly continuous on [–1, 1].
Example 8.4.3. Consider the function ( ) sin , [0, ]f x x x    .
Solution. Let , [0, ]x y    be any two points. Then

 | ( ) ( ) | | sin sin |f x f y x y  

2sin cos2 2
x y x y 

sin cos2 2
x y x y 

2 sin 2
x y  ( | cos | 1) 

| |x y    ( | sin | | |)x  

Therefore, for any  > 0, there exists a > 0 such that
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| f (x) – f (y) | < , whenever | x – y | <  (= )
Hence, f is uniformly continuous on [0, + ].

8.5. NON–UNIFORM CONTINUITY CRITERION
A function f defined on an interval I R is not uniformly continuous on l if and only

if there exists an  > 0 such that for all > 0 there are points x, y (depending on )
in I such that | x – y | <  and | f (x) – f (y)  

Example 8.5.1. Let f be a function defined on ]0, 1] by f (x) = 1
x . Then

(a) f is continuous on [0, 1].
(b) f is not uniformly continuous on [0, 1].
Solution. Let > 0 be any real number. Then by Archimedean Property, there exista

positive integer m such that 1 .m  

Put 1x m  and 1 .1y m   Then x, y,[0, 1] such that

1 1 1 1| | 1 ( 1)x y m m m m m      

and 1 1| ( ) ( ) | 1f x f y x y     , for any  < 1.
Therefore, f is not uniformly continuous.
Theorem 8.5.2. A uniformly continuous function f defined on an interval I R is

continuous on I.
Proof. Let f be uniformly continuous on I. Then, for each  > 0, there exists  >

0 such that for x, yI.
(1) | f (x)  – f (y) | < , whenever | x – y | < .
Let cI be any point. Since I is an interval, every sequence in I converging to c is

either  monotone increasing or monotone decreasing. Let <xn> be any monotone sequence
in I such that  lim .nn x c 
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Then, for each > 0, there exists a positive interger m such that
      | | ,nx c n m    

     | ( ) ( ) | ,nf x f c n m    
     lim ( ) ( )nn f x f c 
      f is continuous at c.
Since cI is any point, it follows that f is continuous on I.
Remark 8.5.3. A continuous function is not necessarily uniformly continuous. Indeed

the continuous function f defined on R by f (x) = x2 is not uniformly continuous since for
any > 0 there exists (by Archimedian Property) a positive integer m such that 1 .m  

Take  x = m and 1 .y m m  .

Then x, yR such that 1| |x y m     and

2 2
2

1 1| ( ) ( ) | 2 2f y f x m mm m
           .

Theorem 8.5.4. A continuous function f on a bounded closed interval [a, b] is
uniformly continuous.

Proof : Suppose f is not uniformly continuous on [a, b]. Then there exists an 0

> 0 such that b for all 1 0, Nnn
       .  There are points xn, yn[a, b] such that

(1) | xn – yn | < 1
n  and | f (xn) – f (yn) |   0

We thus get sequence <xn> and <yn> in [a, b] satisfying (1). Now <xn> is a bounded
sequence, so <xn> has a convergent subsequence say < knx >. Let lim .knk x x  .Then
x[a, b], since [a, b] is closed. Let < kny > be a subsequence of <yn>. Then (1) gives.
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(2) 0
1| | and | ( ) ( ) |k k k kn n n nk

x y f x f yn    

note that  | | | | | |k k k kn n n ny x y x x x    
1 | | 0, asknk

x x kn          ( lim 1)knk x 

      lim kny x
Now, since f is continuous at x and lim , lim ( ) ( )k kn nk kx x f x f x  
then, for each   > 0, there exists a positive integer m such that
(3) | ( ) ( ) | ,knf x f x n m    
Therefore | ( ) ( ) | | ( ) ( ) ( ) ( ) |k k k kn n n nf y f x f y f x f x f x    

| ( ) ( ) ( ( ) ( )) |k k kn n nf y f x f x f x   
| ( ) ( ) ( ( ) ( )) |k k kn n nf y f x f x f x   

0 , n m     (by (2) and (3))
    ( )knf y    does not converges to f (x). However lim .knk y x   This

contradicts the facts that f is continuous at x[a, b]. Hence f must be uniformly continuous.
8.6. EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE
1. Do the following limits exist ? If they exist, find their values:

   (i) 
2 2limx a

x y
x a

 (ii) 11

1lim 2xx  (iii) /0
1lim 1 xx e 

(iv) 10
1lim

1x x ae  (v) 
2

2
3 2lim 2x

x x
x
 
 (vi) 

1

0
1lim xe

x x
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(vii) 0
1lim sinx x

   

2. If 1
( ) xf x e  , then show that at x = 0, the right hand limits zero while the left

hand limit is   , and thus there is no limit of the function at x = 0.
3. Discuss the continuity, of the following function.

    
2 1, 11( )
2, 1

x xxf x
x

     
          at x = 1.

4. Discuss the continuity of f (x) at x = a where f (x) is define as follows :
1( ) sin ,( )

0,
x a x ax af x

x a

     

5. Examine 
2 4 , 22( )

4, 2

x xxf x
x

     
 for continuity at x = 2.

6. Show that | x | is continuous at x = 0 and draw its graph.
7. Investigate the continuity of the function :

2

2

, 2
( ) 0, at

,

x a xa
f x x a x a

aa x ax

      

8. Examine 2( 2)
1 , 2

( )
0, 2

x x
f x e

x


   
 continuity at x = 2.
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9. Examine whether or not the function
sin 2 , 02( )

1, 0

x xf x
x

   
  is continuous at x = 0

10. If f be a function defined on [0, 1] by
, if is irrational( ) 0, if is rational

x xf x x
   then show that f is continuous at x = 0.

11. If f is a function defined on R as
1 1

1 1
[ ] , if 0( ) [ ]

0, if 0

x x

x x
e e xf x e e

x



     
then show that ! is discontinuous it x = 0.

12. Show that the following function is discontinuous at x = 0.
1

1 , if 0( ) 1
0, if 0

x

x
e xf x e

x


    
13. Define the continuity of a function at a point.Examine for continuity the function

1sin , if 0( )
0, if 0

x xxf x
x

   
 at x = 0

14. Discuss the continuity of the function
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1 1, when 02 2
1 1 1( ) when at2 2 2

3 1when 12 2

x x

f x x x

x x

        
15. A function g is defined by

2
1 cos , 0( )

, 0

x xxf x
k x

   
Find the value of k if g is continuous at x = 0.

16. A function f (x) is defined as follows :
33 2 , for 02

3( ) 3 2 , for 0 2
33 2 for 2

x x

f x x x

x x

         

Show that f (x) is continuous at x = 0 and is discontinuous at x = 3
2

17. A function f (x) is defined in the interval [0, 3] in the following way :

2

2

, when 0 1
( ) , when1 2

when 2 34

x x
f x x x

x x

      
Show that f (x) is continuous at x = 2 and x = 1.
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18. Prove that a continuous function on [a, b] is always bounded, but a converse is
not true.

ANSWERS
1. (i) 2a (ii) No, f (1 – 0) 0, f (1 + 0) = 
   (iii) No, f (0 + 0) = 0, and f (a – 0) = 1

(iv) No, f (a + 0) = 0, and f (a – 0) = 1
   (v) 1 (vi) No    (vii) No
3. Continuous 4. Continuous 5. Continuous 7. Continuous 8. Continuous
9. Continuous 10. No 13. Continuous 14. Discontinuous   15. 1

2k 
8.7. SUGGESTED READING

The students are advised to go through following references for details
8.8. REFERENCES

(1) Real analysis by  by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.

Ltd. New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra

Brothers Pacca Danga, Jammu.
(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,

Jallandhar.
8.9. MODEL TEST PAPER

Q.1. Do the following limits exist ? If they exist, find their values:
Q.2. Prove that every continuous function attains supremum & infimum
Q.3. A function g is defined by

2
1 cos , 0( )

, 0

x xxf x
k x

   
Find the value of k if g is continuous at x = 0.

Q.4. A function f (x) is defined as follows :



98

1 1, when 02 2
1 1( ) 0 when at2 2

3 13 when 12 2

x x

f x x x

x x

        

   Show that f (x) is continuous at 1
2x  .

Q.5. A function f (x) is defined as follows :
33 2 , for 02

3( ) 3 2 , for 0 2
33 2 for 2

x x

f x x x

x x

         

Show that f (x) is continuous at x = 0 and is discontinuous at x = 3
2 .

Q.6. A function f (x) is defined in the interval [0, 3] in the following way :

2

2

, when 0 1
( ) , when1 2

when 2 34

x x
f x x x

x x

      
Show that f(x) is continuous at x = 2 and x = 1.

Q.7. Prove that a continuous function on [a, b] is always bounded, but a converse
is not true.

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 9
DIFFERENTIABLE FUNCTIONS

9.1. Introduction : In this lesson the concept of differentiation  of functions is
discussed.
9.2. Objectives : Objective of studying this lesson is to explain differentiations of the
functions & the difference between continuity & differentiation along with some of its
properties.
9.3. DIFFERENTIABILITY AND MEAN VALUE THEOREMS

DERIVATIVES OF A FUNCTION
Definition 9.3.1. If f (x) is a finite and single valued function of x, then

( ) ( )limx a
f x f a

x a



if it exists, is called the derivative of f (x) at x = a and is denoted by f’(a).

Equivalently, if  ( ) ( )limh a
f a h f a

h
 

exists, then it is denoted by f’(a) and is called the derivative of f (x) at x = a.
Right hand and left hand derivatives

( ) ( )limx a
f x f a

x a



means the same as

0
( ) ( )limh

f a h f a
h
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if it exists is called the Right hand derivative at x = a, and is denoted by f(a + 0)
or Rf(a).

Similarly  ( ) ( )limx a
f x f a

x a



means the same as  0 0
( ) ( )limh

f a h f a
h 

 

If it exists is called the Left hand derivative at x = a, and is denoted by f(a – 0)
on Lf(a).

If Rf(a) and Lf(a) both exist and are equal, then f (x) is derivable at x = a and the
common value is nothing but f’(a).

Remarks 9.3.2. (i) If Rf (a) and Lf (a) both exists and are different, then the
derivative will not exist and the function will not be derivable at x = a.

(ii) If f (x) possesses a derivative at every point of the interval (a, b), then it is said
to a derivable in the interva1 (a, b).

(iii) If f (x) is derivable on (a, b) and also at points a and b, then we say that f (x)
is derivable in [a, b].

(iv) The process of finding the derivative of a function is called the Differentiability.
(v) Geometrically, the derivative of the function at a point represents the slope of the

tangent at that point.
Example 9.3.3. Prove that f (x) = x for all xR is derivable in R, the set of real

numbers.
Solution. If a is any point in R, then

0 0
( ) ( )( ) lim limh h

f a h f a a h af a h h 
      0 0lim lim 1 1h h

h
h   

Thus f (a) = 1. Since a is any point of R, this means that f (x) = 1 for all xR.
Hence f (x) is derivable for all xR.

Example 9.3.4. If n is any fixed positive integer and let f be the function defined on
R by f (x) = xn for all xR, then f is derivable in R.

Solution. If a is any point of R, then

  0 0
( ) ( ) ( )( ) lim limh h

f a h f a a h af a h h 
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1 2 21 2
0

. . .......lim n n n n n n n
h

a c a h c a h h a
h

 


    

1 2 11 2
0

( . ........ )lim n n n n n
h

h c a c a h h
h

  


  

1 2 120lim ( . ...... )n n n n
h na c a h h  
   

1nna 
Thus  1( ) nf a na   for any Ra 
Hence ( )f x  exists for all Ra 
Example 9.3.5. Let f (x) = | x |. Then show that f (x) is not derivable at x = 0.

Solution. By definition | x | = when 0
when 0

x x
x x

 
Here f (0) = 0
   Rf (0) = f (0 + 0)

= 0 0 0 0 0 0
( ) (0) | |lim lim lim 10x x x

f x f x x
x x x     
   

Then Lf (0) = f (0 – 0)

  = 0 0 0 0 0 0
( ) (0) | |lim lim lim 10x x x

f x f x x
x x x     
    

Then Lf (0)   Rf (0)
  f is not derivable at x = 0.
Example 9.3.6. Show that a function f (x) defined as

when 0 1( ) 2 when 1
x xf x x x
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is not differentiable at x = 1
Solution. Here f (1)=1

Now Lf (1) = 0 0
(1 ) 1lim lim 1h h

h h
h h 

    

Rf (1) = 0 0
2 (1 ) 1lim lim 1h h

h h
h h 

     
Then Lf(l)   Rf(1)
   The function is not differentiable at x = 1.
Theorem 9.3.7. If a function is derivable at a point, then it is continuous at that

point.
Or

Differentiability   Continuity.
Proof. Let f : [a, b]   R be a differentiable function. Then for all c[a, b].

   0
( ) ( )( ) limh

f c h f cf c h
 

exists and equal f (c). We shall show that f (x) is continuous at x = c, For this
consider

( ) ( )( ) ( ) f c h f cf c h f c hh
    

     0 0
( ) ( )lim [ ( ) ( )] limh h

f c h f cf c h f c hh 
    

   0 0
( ) ( )lim limh h

f c h f c hh 
  

   ( ) 0 0f c  
Thus 0 0lim [ ( ) ( )] 0 lim ( ) ( )h hf c h f c f c h f c      
This prove that f (x) is continuous at x = c for all c[a, b].
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Remark 9.3.8. The converse of the above theorem thus not hold, i.e. a function
is continuous at a point but may fail to be derivable at that point.

In other words, continuity is a necessary condition for derivability but not sufficient
as can be seen from the example given below.
9.4. EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE
1. If c is any fixed number and f be the function defined on R by

f (x) = c for all xR, then show that f (x) is derivable for all xR.

2. Show that the function 
1sin , if 0( )
0, if 0

x xxf x
x

   
is continuous at x = 0, but is not differentiable at x = 0.

3. Show that the function
1( ) sin , if( )

0, if
x a x ax af x

x a

     
is continuous at x = a, but is not differentiable at x = a.

4. Show that the function
2 1sin , if 0( )

0, if 0
x xxf x

x

   
is differentiable as well as continuous at x = 0.

5. Show that the function
2 , if 0( ) 0, if 0

x xf x x
        is not derivable at x = 0.

6. Show that the function f is defined on R as under :
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1, if 0( ) 0, if 0
xf x x
      is not differentiable at x = 0.

7. Prove that every differentiable function is continuous. Is the converse true ?
8. Show that the function

   1/ , 01( )
0, 0

x
x xef x

x

    
   is continous at x = 0 but is not derivable at x = 0.

9. Show that the function f (x) = | x – 4 |  is continuous but not derivable
at x = 4.

10. Examine the derivability of the function
2 if 0

5 x 4 if 0 1( )
4 3 if 1 2

3 4 if 2

x x
xf x

x x x
x x



           
   at x = 0, 1 and 2.

9.5. MEAN VALUE THEOREMS
9.5.1.Rolle’s Theorem. The following theorem, known as Rolle’s theorem is one

of the most important theorem of real analysis. It is at the root of all mean value
theorems such as:

Taylor’s theorem and Maclaurin’s theorem which we shall discuss in the next lesson.
9.5.2. Rolle’s Theorem. Let f be a function defined on [a, b] such that
(i) f is continuous on [a, b] (ii) f is derivable on (a, b)
(iii) f (a) = f (b)
Then there exists a real number c between a and b such that f (c) = 0.
Proof. Since f is continuous on [a, b] and every continuous function on [a, b] is

bounded on [a, b]. Therefore f is bounded on [a, b].
Let M = Sup. f, m = inf. f
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Two different cases arise :
1. M = m. Then f is constant over [a, b] and consequently
 f (x) = 0 for all x[a, b].
2. M   m. Since f (a) = f (b) therefore, at least one of the number M and m is

differ from f (a) and therefore, also from f (b). For the sake of definiteness, assume that
M   f (a).

Since every continuous function on [a, b] attains its supremum therefore, there exists
some real number c in [a, b] such that f (c)= M. Further, since f (a)   M   f (b),
therefore, c is different from both a and b. This means that c lies in the open interval
(a, b).

Since f (c) is the supremum of f on [a, b], therefore, f (x)   f (c) for all x in
[a, b]. This means that

( ) ( ) 0f c h f c
h

   ...(i)
For all positive real numbers h such that c – h lies in [a, b].
Taking limit as h  0 and observing that since f (x) exists at each point of (a, b),

and therefore, in particular at x = c, we have
Lf (c)   0 ...(ii)

From (i) we similarly have,
     f (c + h)   f (c)

for all positive real numbers h such that c + h lies in [a, b]. By the same argument
as we have

       Rf (c)   0 ...(iii)
Since f (x) exists at x = c, therefore

Lf (c) = f (c) = Rf (c) ...(iv)
From (ii), (iii) and (iv) we find that f (c) = 0.
Alternative Form of Rolle’s Theorem
If a function f (x) is such that
(i) it is continuous in the closed interval
(ii) it is derivable in the open interval
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(iii) f (a) = f (a + h)
then there exists at least one number such that

f (a + h) = 0, 0 <  < 1
(Because the number c which lies between a and a + h must be greater than a

by a fraction of h and may be written as c = a + h where 0 < < 1.
Note : Rolle’s theorem fails to hold good for a function which does not satisfy even

one three conditions stated above.
9.5.3. Geometrical Significance of Rolle’s Theorem. When geometrically interpreted,

the conclusion of the theorem states that the ordinates of the end point A, B being equal,
there is a point on the curve the tangent at which is parallel to be cord AB (x-axis).

Example 9.5.4. Verify Rolle’s Theorem for the function
f (x) = x2 – 6x + 8 in the interval [2, 4].

Solution. Here a = 2, b = 4
1. f (x) = x2 – 6x + 8 f (x) is a polynomial. Since every polynomial is a continuous

function of x for every value of x.
f (x) is continuous in the closed interval [2, 4].
2. f (x) = 2x – 6 which exists in the open interval (2, 4).
3. f (2) = 4 – 12 + 8 = 0
   f (4) = 16 – 24 + 8 = 0
  f (2) = 0 = f (4)
f (x) satisfies all the conditions of Rolle’s Theorem. Hence there must exist at least

one number c between 2 and 4 such that f (c) = 0.
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Now f (x) = 2x – 6. Therefore f (c) = 0 gives 2c – 6 = 0, c = 3.
This is a point in the open interval (2, 4) and therefore, the theorem is verified.
Example 9.5.5. Discuss the applicability of Role’s theorem of the function

f (x) = 2 + (x – 1)2/3 in [0, 2].
Solution. Here f (x) = 2 + (x – 1)2/3

    f (x) = 2
3  (x– 1)–1/3 ...(1)

Equation (1) shows that f (x) does not exist at x = 1  (0, 2). Therefore Rolle’ss
theorem cannot be applied.
9.6. EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE
1. Verify Rolle’s Theorem for the function (x – a)3 (x – b)4 in the interval [a, b].
2. Verify Rolle’s Theorem for x3 – 4x for the interval [–2, 2].
3. Verify Rolle’s Theorem for the function f (x) = 8x – x2 in [0, 8].
4. Verify Rolle’s Theorem for the function f (x) = x (x + 3) ex/2 in [–3, 0].
5. Verify Rolle’s Theorem for the following functions :

(i) f (x) = sin x in [ ,  ] (ii) f (x) = ex sin x in [0, ]
(iii) f (x) = log x [0, e]

6. Discuss the applicability of Rolle’s Theorem to the function  f (x) = [x] in [–1, 1].
7. Can Rolle’s Theorem be applied to

(i) f (x) = tan x in [0, ] (ii) f (x) = sec x in [0, 2]
ANSWER

1. c = (3b + 4a) 2. c = 1.555 (approx.)    3. c = 4 4. C = –2

5. (i) c = 2
   (ii) c = 3

4    (iii) c = 4
    6. not applicable

7. (i)  Rolle’s theorem cannot be applied.   (ii) Rolle’s theorem cannot be applied.
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9.7.  LAGRANGE MEAN VALUE THEOREM
STATEMENT. If a function f (x) is such that
(i) it is continuous in the closed interval [a, b]
(ii) it is derivable in the open interval (a, b), then there exists at least one value c

in open interval (a, b) such that ( ) ( ) ( )f b f a f cb a
   .

Proof. Consider the function
F (x) = f (x) + Ax ...(i)

where A is the constant to be determined such that
F (a) = F (b)

Now F (a) = f (a) + Aa, F (b) = f (b) + Ab
Since F (a) = F (b)
   f(a)+Aa = f(b) +Ab
or     f (b) – f (a) = – A (b – a)

    – A = ( ) ( )f b f a
b a

 ...(ii)

Now f (x) is given to be continuous in a   x   b and derivable in a < x < b.
Also, A being constant, Ax is also continuous at a   x   b and derivable in a x   b.

F (x) = [f (x) + Ax] is
1. Continuous in the interval a   x   b.
2. derivable in the interval a < x   b.
3. F(a) = F(b)
  F satisfies all the three conditions of Rolle’s Theorem.Thus there must exist one

value c in the open interval (a, b) such that F (c) = 0. Now F (x) = f (x) + A
F(c) = 0 gives f (c) + A = 0
or    – A = f (c) ...(iii)
From (ii) and (iii) we get
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( ) ( ) ( )f b f a f cb a
  

Alternative form of Lagrange’s Mean Value Theorem.
If a function f (x) is such that
1. it is continuous in the closed interval [a, a + h]
2. it is derivable in the open interval ]a, a + h[, then there exists at least one numberh that f (a + h) = f (a) + hf (a + h) where 0 <  < 1.
Proof. Let a + h = b.

Proved the first form ( ) ( ) ( )f b f a f cb a
   ...(i)

Because a + h = b
  b – a = h, the length of the interval. The number c which lies between a and

a + h must be greater than ‘a’ by a fraction of h and may be written as c a + Oh where
0 is true positive fraction lying between 0 and 1, Let 0 < 0 <1.

(1) becomes ( ) ( ) ( )f a h f a f a hb a
    

or   ( ) ( ) ( ) where 0 1.f a h f a hf a h       
9.7.1. Geometrical Interpretation of Lagrange’s wean Value Theorem. Let A and

B be points on the graph of the function y = f (x) corresponding to x = a and x = b.
Therefore the coordinates of the points A and B are [a, f (a)] and [b, f (b)] respectively.

Slope of chord AB = difference of ordinates ( ) ( )
difference of abcissae

f b f a
b a
 

Also slope of the tangent at any point P, for which x = c, is f (c).
By Lagrange’s mean value theorem, we have

................ = f (c), a < c < b
Slope of chord AB = slope of tangent at x = c
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Thus Lagrange’s Mean value theorem asserts geometrically that there exists at least
point on the graph of the function at which the tangent is parallel to the chord joining the
points A and B.
9.8. SUGGESTED READING

The students are advised to go through following references for details
9.8. REFERENCES

(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.

New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra Brothers

Pacca Danga, Jammu.
(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,

Jallandhar.
9.9. MODEL TEST PAPER

Q.1. Verify Rolle’s Theorem for the following functions :
(i) f (x) = sin x in [ ,  ] (ii) f (x) = ex sin x in [0, ]
(iii) f (x) = in [0, ]

Q.2. Discuss the applicability of Rolle’s Theorem to the function f (x) = [x] in
[–1, 1].



111

Q.3. Can Rolle’s Theorem be applied to
(i) f (x) = tan x in [0, ] (ii) f (x) = sec x in [0, 2]

Prove that every differentiable function is continuous. Is the converse true?
Q.4. Show that the function is continous at origin but is not derivable at x = 0.
Q.5. Show that the function  f (x) = | x – 4 |

   Is continuous butnot derivable at x = 4.
Q.6. Examine the derivability of the function ____________

2 if 0
5 x 4 if 0 1( )

4 3 if 1 2
3 4 if 2

x x
xf x

x x x
x x



           
   at x = 0, 1 and 2.

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 10
APPLICATIONS OF DIFFERENTIABLE FUNCTIONS

10.1. Introduction: In this lesson some applications of mean value theorem are
discussed.
10.2 Objectives : The objective of studying this lesson is to explain the expansions
of some of important series of trigonometric functions.
10.3. CAUCHY’S MEAN VALUETHEOREM STATEMENT

If functions f (x) and g (x) such that
(i) both are continuous in the closed interval [a, b].
(ii) both are derivable in the open interval (a, b).
(iii) g(x)   0 for any value of x in the open interval (a, b), then there exists at least

one valuec of c in the open interval (a, b) such that ( ) ( ) ( )
( ) ( ) ( )

f b f a f c
g b g a g c

  .

Proof. Consider the function
F (x) = f (x) + Ag (x) ...(i)

where A is constant to be determined such that
F (a) = F (b)

Now F (a) = f (a) + Ag (a)
F (b) = f (b) + Ag (b)

Since F (a) = F (b)
    f (a) + Ag (a) = f (b) + Ag (b)
or       f (b) – f (a) = –A [g (b) – g (a)]
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        –A = ( ) ( )
( ) ( )

f b f a
g b g a


 ...(ii)

where g (b) – g (a)    0, because if g (b) – g (a) = 0, then g (a) = g (b).
T h e r e f o r e
g (x) satisfies all the three conditions of Rolle’s theorem   g (x) = 0 for at least one
value of x in the open interval a < x < b which is contrary to the given condition that
g (x)   0 for any value of x in the interval a < x < b.

Since f (x) and g (x) are both, given to the continuous in the interval and 9a x b  ,
derivable in the interval a < x < b.

  F (x) = f (x) + Ag (x) is
1. Continuous in the interval a x b  .
2. derivable in the interval a < x < b.
3. F (a) = F (b)
   F (x) satisfies all the three conditions of Rolle’s Theorem.
Thus there exists at least one value c in the interval a < x < b such that F(c) = 0
Now F (x) = f ’(x)+ Ag’(x)
   F (c) = 0 gives f (c) + Ag (c) = 0.

     – A = ( )
( )

f c
g c

 ...(iii)

From (ii) and (iii), we get
( ) ( ) ( )
( ) ( ) ( )

f b f a f c
g b g a g c

  
Corollary 10.3.1.Derive Lagrange’s Mean Value Theorem from Cauchy’s Mean

Value Theorem.
Proof : If g (x) = x, then g (b) = b, g (a) = a and g (x) = 1 for all x. Therefore

the result of Cauchy’s Mean Value Theorem viz.
( ) ( ) ( )
( ) ( ) ( )

f b f a f c
g b g a g c

  

reduces to ( ) ( ) ( ) ( )1
f b f a f c f cb a

     which is Lagrange’s Mean Value Theorem.
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Alternate form of Cauchy’s Mean Value Theorem. If two functions f (x) and
g (x) are such that

(i) both are continuous in the closed interval [a, a + h]
(ii) both are derivable in the open interval (a, a + h).
(iii) g (x)   0 for any value of x in the open interval (a, a + h), there exists at

least one number such that
( ) ( ) ( )
( ) ( ) ( )

f a h f a f a h
g a h g a g a h

         where 0 <  < 1.
 Physical Interpretation. We may write

{ (b) ( )} / ( ) ( )
{ ( ) ( )} / ( ) ( )

f f a b a f c
g a b g a b a g c

     
Hence, the ratio of the mean rates of increase of two functions in an interval is

equal to the ratio of the actual rates of increase of the functions at some point within
the interval.

Example 10.3.2. Verify Lagrange’s Mean Value theorem for the function

f (x) = x (x – 1) (x – 2) in 10, 2
    .

Solution.     f (x) = x (x – 1) (x – 2)
= x (x2 – 3x + 2)
= x3 – 3x2 + 2x

      a = 0, b = 1
2

1. f (x) being a polynomial is continuous in the interval 0   x   1
2

2. f (x) = 3x2 – 6x +2 which exists in the interval 0 < x < 1
2 .

Therefore by Lagrange’s Mean Value Theorem, we have



115

f (c) = ( ) ( )f b f a
b a



i.e. 3c2 – 6c + 2 = 
1 3 1 0 38 4

1 402

      


or 12c2 – 24c + 5 = 0
424 2124 576 240 24 336

24 24 24c     

  1 11 21 1 (4.58) 1 .76 1.76, .246 6      

Discarding the value c = 1.76 which does not lie in the given interval 10, 2
     = (0, .5).

  c = 24, a value which lies between 0 and 1
2 .

Hence the verification.
Example 10.3.3. Find c of Cauchy’s Mean Value Theorem for the pair of functions

1( ) , ( ) in[ , ]f x x g x a bx  .

Solution.  1( ) , ( )f x x g x x  [Assuming 0 < a < b].

      1 1( ) ( )2 2f x g xx x x   
Both f (x) and g (x) are continuous in [a, b] and derivable in (a, b).
By Cauchy’s Mean Value Theorem we have

( ) ( ) ( )
( ) ( ) ( )

f b f a f c
g b g a g c
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or   
1

2
1 1 1

2
b a c
b a c c
 


or  abb a ca b  
or       ab c  

   ( , )c ab a b 
10.3.4. Important Deduction from the Mean Value Theorem.
1. If f (x) be a function such that f (x)=0 for all values of x in a < x < b, then

f (x) is a constant in this interval.
Proof. Let x1, x2 be any two values of x such that a < x1 < x2 < b.
Because f (x) = 0 for all values of x in (a, b) and {x1, x2} (a, b). Since f (x)

satisfies all the condition of the Lagrange’s Mean Value Theorem in [x, x2] therefore we
have

2 1 1 22 1
( ) ( ) ( ) wheref x f x f c x c xx x

    .
But f (x) = 0 for all x in (a, b). Therefore f (c) = 0
    2 1 2 1 2 1( ) ( ) ( ) 0 0 . . ( ) ( )f x f x x x i e f x f x     
Since x1 and x2 are any two values of x in (a, b), it follows that f (x) has the same

value for every value of x in (a, b). Hence f (x) is a constant in the interval (a, b).
Corollary 10.3.5. If two functions f (x) and g (x) have the same derivatives. Then

they differ by a constant.
Proof : Consider a function

  F (x) = f (x) – g (x) where f (x) = g (x)
Now  F (x) = f (x) – g (x) = 0
By Deduction I, F (x) = c, a constant i.e., f (x) – g (x) = c.
2. If the derivative f(x) is positive or zero in (a, b), without being always zero, then
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f (b) > f (a).
Proof : Let x1, x2 be any value between a and b;then applying Mean Value Theorem

to the function f (x) for the two intervals [a, x] and [x, b], we get

1 2
( ) ( ) ( ) ( )( ) and ( )f x f a f b f xf c f cx a b x

    
where a < c1< x and  x < c2 < b.
But 1 2( ) 0 and ( ) 0f c f c  
Therefore, we get

   ( ) ( ) 0 and ( ) ( ) 0f x f a f b f x   
           ( ) ( ) and ( ) ( )f x f a f b f x 
   ( ) ( ) ( )f b f x f a 
   ( ) ( )f b f a
But  ( ) ( )f b f a
For, if it were so, then f (x) = f (b) x [a, b] and the function reduces to a constant

whose derivative is always equal to zero, which contrary to the hypothesis that f(x) is
not zero in  [a, b]. Hence f (a) > f (b).

3. If the derivative f(x) is negative or zero in [a, b], without being zero always, then
f (b) < f (a). The proof is similar to (2).

Note. Increasing or decreasing function. A function f (x) in the interval (a, b) is
said increasing or decreasing function according as

f (x2) > f (x1)    or    f (x2) < f (x1)  where  a   x1 < x2   b.
10.4 EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE
Q. Verify Lagrange’s Mean Value Theorem for the following functions and find c if

possible
1. f (x) = (x – 1) (x – 2) (x – 3) in [0, 4].
2. f (x) = 2 4x   in [2, 4].
3. f (x) = log x in [1, e]
4. f (x) = ex in [0, 1].
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5. f (x) = x3 – 5x2 – 3x in [1, 3].

6. f (x) = 2 1
3 4

x
x

  in [1,2].

Find ‘c’ of Cauchy’s Mean, Value Theorem for the following pairs of function in [a,
b].

7. f (x) = ex, g (x) = e–x
8. f (x) sin x, g (x) = cos x
9. Verify Cauchy’s Mean Value Theorem for the functions f (x) = x2 and g (x) =

x3 in [1, 2].
10. If in Cauchy’s Mean Value Theorem we write

2
1 1( ) , ( )f x g x xx   then show that c is the harmonic mean between a and b.

ANSWERS
1. c = 3.155, .845 2. c = 6 3.  c = e – 1

4. c = log (e – l) 5. c = 7
3

6. Theorem fails as there is no value of c in (1, 2) that satisfies the conditions of
Theorem.

7. c = 2
a b  8. c = 2

a b  9. c = 14
9

10.5. TAYLOR’S THEOREM WITH LAGRANGE’S FORM OF
REMAINDER AFTER N–TERMS

Statement. If a function f (x) is such that
1. 1( ), ( ), ( ),........., ( )nf x f x f x f x   are continuous in the closed interval

.a x a h  
2. ( )nf x  exists in the open interval a < x < a + h,
then there exists at least one number 0 between 0 and 1 such that
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2 3 1 1( ) ( ) ( ) ( ) ( )..... ( ) ( )2! 3! ( 1) !
n nn nh h h hf a h f a hf a f a f a f a f a hn n
               

Proof. Consider the function

F (x) = 2( )( ) ( ) ( ) ( ) .....2!
a h xf x a h x f x f x      

1 1( ) ( )( ) .A( 1)! ( )!
n nna h x a h xf xn n
          ...(i)

where A is a constant to be determined such that
F (a) = F (a + h)

Now  F (a) = f (a) + hf (a) + ...... 
1 1( ) A( 1)! ( )!

n nnh hf an n
  

F (a + h) = f (a + h)
Since F (a + h) = F (a)

   
2 1 1( ) ( ) ( ) ( ) ...... ( ) A2! ( 1)! !

n nnh h hf a h f a hf a f a f an n
          ...(ii)

Now it is given that 1( ), ( ), ( ),......., ( ),nf x f x f x f x   are continuous in the interval
a x a h    and their derivatives ( ), ( ),.............., ( ).nf x f x f x 

Also  2( ) ( )( ), , .......,2! !
na h x a h xa h x n

    
(being polynomials) and A (being constant)

are continuous in the interval a x a h    and derivable in the interval a < x <
a + h.

  F (x) is 1. Continuous in the closed interval a x a h  
2. derivable in the open interval a < x < a + h,

and 3. F (a + h) = F (a).
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Thus F (x) satisfies all the three conditions of Rolle’s Theorem. Therefore there
exists at one number  between 0 and 1 such that

F (a + h) = 0.
Now    F (x) = ( ) ( ) ( ) ( ) ( ) ( ) ............f x f x a h x f x a h x f x          

1 1( ) ( )....... ( ) A( 1)! ( 1)!
n nna h x a h xf xn n
      

    
1( ) [ ( ) A]( 1)!

n na h x f xn
  

But F ( ) 0a h    gives 
1( ) [ ( ) A]( 1)!

n na h a h f xn
    

But F (a + h) = 0 gives 
1( ) [F ( ) A] 0( 1)!

n na h a h a hn
       

Now  0 and 1 0h     [ 0 1]  

     A ( )nf a h  
From (ii), we get

2 1 1( ) ( ) ( ) ( ) ..... ( ) ( )2! ( 1)! !
n nn nh h hf a h f a hf a f a f a f a hn n
           

Then (n + 1)th term ( )!
n nh f a hn    is called Lagrange’s form of remainder after n-

terms and is denoted by Rn.
10.6. MACLAURIN’S THEOREM WITH LAGRANGE’S FORM OF

REMAINDER AFTER n–TERMS
Statement. If a function f (x) is such that
1. 1( ), ( ), ( ),......, ( )nf x f x f x f x   are continuous in the closed interval [0, x].
2. fn (x) exists in the open interval (0, x) then there exists at least one number
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between 0 and 1 such that
2 1 1( ) (0) (0) ( ) ....... ( ) ( )2! ( 1)! ( )!

n nn nx x xf x f xf f a f a f a xn n
          

This we can get by putting a = 0 and h = x in Taylor’s Theorem.
Taylor’s and Maclaurin’s Series
10.6.1. Taylor Series. Let the function f (x) possesses derivatives of all orders in

an interval [a, a + h], then for all positive integral values of n, we know that
2 1 1( ) ( ) ( ) ( ) ....... ( ) R2! ( 1)!

n n nh hf a h f a xf a f a f an
         

where R ( ), 0 1!
n nn

h f a hn     
If now Rn   0 as n  , then

1 1( ) lim ( ) ( ) ...... ( ) R( 1)!
n n nn

hf a h f a hf a f an
 

     
where Rn   0 as n  , then

1 1( ) lim ( ) ( ) ...... ( )( 1)!
n n

n
hf a h f a hf a f an

 


        
so that we see that the series

    
2 1 1( ) ( ) ( ) ......... ( )2! ( 1)!

n nh hf a hf a f a f an
      

is convergent and is sum is f (a + h).
Thus we have shown that if f (x) possesses derivatives of all orders in the interval

[a, a + h] and the remainder Rn, tends to zero as n-tends to infinitely, then

 2 1( ) ( ) ( ) ( ) ......... (0) .....2! !
n nh xf a h f a hf a f a fn
        ...(A)
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This series is called Taylor’s series.
10.6.2. Maclaurin’s Series. Put a = 0 and h = x in (A), we have

2( ) (0) (0) (0) ......... (0) .......2! !
n nx xf x f xf f fn       ..(B)

This series is called Maclaurin’s series.
Note. Put h = x – a in (A), we get

2( ) ( )( ) ( ) ( ) ( ) ( ) ......... ( ) .......2! !
n nx a x af x f a x a f a f a f an

        
...(C)

This is another form of Taylor’s series.
Example 10.6.3. Expand ax by Maclaurin’s theorem with Lagrange’s form of

remainder n-terms.
Solution. Here 2( ) ( ) log , ( ) (log )x x xf x a f x a a f x a a    
    ( ) (log )n x nf x a a
Putting x = 0, we get  (0) (log )n nf a
     2(0) 1, (0) log , (0) (log ) .........f f a f a   

1 1(0) (log ) and ( ) ( ) (log )n n n x nf a f x a a    
By Maclaurin’s Theorem with Lagrange’s Form of remainder after n-terms, we have

2 1 1( ) (0) (0) ( ) ......... (0) ( )2! ( 1)! !
n nn nx x xf x f xf f a f f xn n
         

(0 1)  

     
2 12 11 log (log ) ........ (log ) (log )2! ( 1)! !

n nx n nx x xa x a a a an n
      

Here Lagrange’s remainder after n-terms (log ) where 0 1.!
n nx an   
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Example 10.6.5. Expand tan–1 x in powers of .4
xx   

Solution. By Taylor’s series,we know that
2 3( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ......2! 3!

x a x af x f a x a f a f a f a         ...(i)

Here 1( ) tan and 4f x x a  

1( ) tan 4f a  

2
1( ) 1f x x  2

1( )
1 4

f a      

2 2
2( ) (1 )

xf a x
  22

2( )
1 16

f a
    

Putting in (1), we get

1 1
2 22

1 4 23tan tan ........4 4 2!1 116 16

x
x x 

                   
21

2 2
1tan .........4 4 41 4 116 16

x x                       
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Example 10.6.6. Prove that
2 31 1

2 3/2 2 5/22
1 2sin ( ) sin . . ........2! 3!(1 ) (1 )1

h x h x hx h x x xx
        

Solution. Here f (x + h) = sin–1 (x + h)
 f (x) = sin–1 x

  
1

2 2
2

1( ) (1 )
1

f x x
x

   
3

2 2 3
2 2

1( ) (1 ) .( 2 )2 (1 )
xf x x x
x

    


     
3 1 3 12 22 2 2 2 22 2

2 3 2 3

31.(1 ) . (1 ) ( 2 ) (1 ) 3. (1 )2( ) (1 ) (1 )
x x x x x x xf x x x

         
1

2 2 2 22
2 3 2 5/2

(1 ) [1 3 ] 1 2
(1 ) (1 )

x x x x
x x

     
By Taylor’s series, we know that

  2 3( ) ( ) ( ) ( ) ( ) ......2! 3!
h hf x h f x hf x f x f x       

2 3 21 1
2 3/2 2 5/22

1 2sin ( ) sin . .2! 3!(1 ) (1 )1
h h x h xx h x x xx

       

  
2 2 32

2 3/2 2 5/22
1 2sin ........2! 3!(1 ) (1 )1

h x h x hx x xx
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10.7. EXAMINATION ORIENTED EXERCISE/ LESSON END EXERCISE
Q.1. Expand ex by Maclaurin’s theorem with Lagrange’sform of remainder after n-

terms.
Q.2. Show that

2 3 12 1log (1 ) ...... ( 1) ( 1) for 12 3 1 (1 )
n nn n

n
x x x xx x xn n x

             

Q.3. Prove that 
2 3 2( 1)cos 1 ......... ...... for all R2! 4! (2 )!

n nx x xx xn
      

Q.4. Find the Taylor’s series about x = 2 for f (x) = x3 + 2x + 1 ( )x    .
Q.5. Expand (i) x3 in powers of (x – 1)

(ii) sin x in powers of (x – 4)
(iii) xn in powers of (x – a).

Q.6. Assuming the possibility of expansions :
Prove the following :

(i) 
2 31 .........2! 3!

x h x h he e h         

(ii) 21 1
2 2 2tan ( ) tan .......1 (1 )

h xhx h x x x
      

(iii) 2 2 3 21 1log sin ( ) log sin cot cosec cot cosec .....2 2x h x h x h x h x x     
Q.7. By Maclaurin’s theorem or otherwise, find the expansion of
      sin (ex – 1) upto and including the term in x4.
Q.8. Assuming the possibility of expansion, obtain the following :
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(i) 2 3 4log (1 ) .....2 3 4
x x xx x     

(ii) 3 5 5sin ........3! 5!
a x a xax ax    

(iii) 2 4 6log sec ........2 12 46
x x xx    

10.8. SUGGESTED READING
The students are advised to go through following references for details

10.9. REFERENCES
(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis  by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New

Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.

Ltd. New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra

Brothers Pacca Danga, Jammu.
(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,

Jallandhar.
10.10. MODEL TEST PAPER

Q.1. Expand ex by Maclaurin’s theorem with Lagrange’sform of remainder after n-
terms.

Q.2. Show that

2 3 12 1log (1 ) ...... ( 1) ( 1) for 12 3 1 (1 )
n nn n

n
x x x xx x xn n x

             

Q.3. Prove that 
2 3 2( 1)cos 1 ......... ...... for all R2! 4! (2 )!

n nx x xx xn
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Q.4. Find the Taylor’s series about x = 2 for f (x) = x3 + 2x + 1 ( )x    .
Q.5. Expand (i) x3 in powers of (x – 1)

(ii) sin x in powers of (x – 4)
(iii) xn in powers of (x – a).

Q.6. Assuming the possibility of expansions :
Prove the following :

(i) 
2 31 .........2! 3!

x h x h he e h         

(ii) 21 1
2 2 2tan ( ) tan .......1 (1 )

h xhx h x x x
      

(iii) 2 2 3 21 1log sin ( ) log sin cot cosec cot cosec .....2 2x h x h x h x h x x     
Q.7. Assuming the possibility of expansion, obtain the following :

(i) 2 3 4log (1 ) .....2 3 4
x x xx x     

(ii) 3 5 5sin ........3! 5!
a x a xax ax    

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 11
COMPLEX TRIGONOMETRY

11.1. Introduction : In this lesson the concept of De Moivre’s theorem and its
application is discussed.
11.2 Objectives : Objective of studying this lesson is to explain De Moivre’s theorem
and its application in solving problems.
11.3. COMPLEX NUMBERS

The students is already familiar with the idea of a complex numbers. In the domain
of real numbers there is no number which satisfies the equation x2 = – 1. In order to
enlarge our conception of number in such a way that it may be possible to apply the
algebraical operation of root extraction to any number whatsoever, a new kind of number,
denoted by i and known as the imaginary unit is introduced.

This number is defined as satisfying the fundamental laws of algebra, associative,
commutative and distributive, and as being such that i2 = – 1.

This generalisation of the idea of number is valid one since no deductions from it
lead to contradictions.

A number of the form z = x + iy, where x and y are real numbers, is called a complex
number ; x is called its real part and is denoted by R(z) , while y is called its imaginary
part and is written as I (z).

If y = 0, the number is purely real; if x = 0, it is purely imaginary.
All the operations of algebra-addition, subtraction, multiplication, division, and root

extraction. – apply to complex numbers, and they satisfy the fundamental laws, associative,
commutative and distributive of these operations.

We also know that if two complex numbers are equal, then their real parts are equal
and their imaginary parts are equal. In particular, the complex number x + iy cannot have
the value zero unless x andy are both zero.



129

11.3.1. Geometrical Representation of a Complex Number – The Argand
Diagram.

We know how a real number can be represented by a point on a straight line.
With the complex number z = x + iy are attached two real numbers x and y,

occuring in a particular order i.e., x coming first and y after it. In other words, with the
complex number z = x + iy is associated an ordered pair (x, y) of real numbers. Thus
ordered pair of real numbers gives us a definite point in a plane with x as its abcissa and
y as its ordinate. In this way we get a method of representing a complex number
geometrically by a point in a plane.

Thus, the complex number z = x + iy is
represented geometrically by the point P whose
rectangular co-ordinates are x and y.

It is clear that the complex number z =
x + iy defines unique point P (x , y) and
conversely the point P (x , y) defines a unique
complex number z = x + iy.

The point P is said to be “the point
corresponding to the complex number z” or
simply “the point z”.

This sort of geometrical representation of complex number by points in a plane was
suggested by Argand, a Swiss Mathematician, in 1806, and so the diagram representing
complex numbers by points is called the Argand Diagram.

The plane in which we draw this diagram is sometimes called the Complex Plane.
If the complex number z = x + iy has its

imaginary part y = 0, then it becomes purely
real. In this case it is represented by the point (s,
0) which lies in x-axis. Thus, purely real numbers
are represented by points lying on x-axis. For the
reason in an Argand diagram the x-axis is called
the real axis.

Similarly, purely imaginary numbers are
represented by points which lie on y-axis and, for
this reason, in an Argand diagram the y-axis is
called the imaginary axis.

Example 1.  Find the points corresponding to the complex numbers
           3 + 4l, – 2 + 5i, – 2 – 3i, 2 – 7i, 5, 6i.
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Solution. The points are (3, 4), (– 2, 5), (– 2, – 3), (2, – 7), (5, 0) and (0, 6)
respectively.

Example 2. Find the complex numbers corresponding to the points
                 (– 1, – 1), (0, – 2) and (– 3, 0).

Solution. The complex numbers are  – 1 – i, – 2i and – 3 respectively.
11.3.2. The Modulus and the Amplitude of a complex number. Let P be the

point z = x + iy. Let the polar co-ordinates of P be (r, ), where r is the positive measure
on the length of OP, and  is the measure of the angle XOP.

Then,   OM cos cos cosOP
x x rr       

Parallelly PM sinOP  
PM = OP sin 
  y = r sin 

        cos
and cos

x r
y r
   ...(1)

From these equations we get

      
2 2

1and tan
r x y

y
x


    

...(2)

The number r is called the modulus of z and is written as mod z or | z |, and the
number  is called the amplitude of z and written as amp z.

Thus, if z = x + iy,  then   | z | = 2 2x y   and  amp z = tan–1 y
x .

Cor.   | | | |z x iy     2 2 2 2( ) ( ) | | .x y x y z      
Principal value of the amplitude
Note 1. Obviously,  = amp z has many values differing from one another by

multiplies of 2.

Y

Y

X O
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The value of  which lies between –  and  is called principal value of the
amplitude.

As a rule, when we speak of the amplitude, we always mean the principal value of
the amplitude.

Thus, – < amp z  
Note 2. The basic equations connecting (x , y) and (r, ) are

    cos
sin

x r
y r
   ...(A)

From these, by division, we obtain

tan y
x          or      1tan y

x
       ...(B)

The value of  which satisfies the two equation of (A) simultaneously will satisfy
(B), but all the values of  which satisfy (B) may not satisfy (A).

Hence,  should be obtained from (A) and not from (B).
Note 3. z = r (cos  + i sin ) expresses the complex number z in terms of its

modulus and amplitude.
It is called the trignometric form of z.
11.3.3. Example. Express the following complex numbers in trignometric form,

indicating the modulus and amplitude in each case :
     1 3, 1 3, 3, 1 3, 2, 2, 2 , 2i i i i i i       

Sol.  (i)  1 3i
Here       cos 1

and sin 3
r
r

    
...(1)

Squaring and adding, we get r2 = 4  or   r = 2.
Substituting for r, we get

1cos 2
3and sin 2
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     3
    (principal value)

Hence,       1 3 2 cos sin3 3i i      

It may be noted that the modulus of the given complex number is 2 and 3
 .

11.3.4. Modulus of a sum
Theorem 1.  1 2 1 2| | | | | |z z z z  
Proof.    1 2 1 2| | | | | |z z z z  
or   if    2 2 2 2 2 21 2 1 2 1 1 2 2( ) ( )x x y y x y x y      
or   if

2 2 2 2 2 2 2 2 2 21 2 1 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) 2 .x x y y x y x y x y x y         
or  if              2 2 2 21 2 1 2 1 1 2 2.x x y y x y x y   
or  if           2 2 2 2 21 2 1 2 1 1 2 2( ) ( ) ( )x x y y x y x y   
or  if                2 2 2 21 2 1 2 1 2 2 12x x y y x y x y 
or   if                        21 2 2 10 ( )x y x y 
or   if          21 2 2 1( ) 0x y x y    which is always true.
Hence, the result.
Second Proof.
See the construction for the sum of two complex numbers
                1 1 2 2 1| | OP , | | OP P P,z z  
and       1 2| | OP.z z 
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In triangle OP1P, we have
                 OP   OP1 + P1P
         1 2 1 2| | | | | |z z z z  
Cor. 1. The result can be extended step by step.
Thus,     1 2 3 1 2 3| | | | | |z z z z z z    
                         1 2 3| | | | | |,z z z    etc.
In general,
   1 2 1 2| ........ | | | | | .......... | |n nz z z z z z      
Cor 2.   1 2 1 2 1 2| | | ( ) | | | | |z z z z z z      
But          2 2| | | |z z 
        1 2 1 2| | | | | |z z z z  
Cor 3.  1 2 1 2| | | | | |z z z z  
Proof.   1 1 2 2 1 2 2| | | ( ) | | | | |z z z z z z z     
or       1 2 1 2| | | | | |z z z z  
         1 2 1 2| | | | | |z z z z   .
11.3.5. Modulus and amplitude of a product
Theorem 3.   1 2 1 2| | | | . | |z z z z
and        amp (z1z2) = amp (z1) + amp (z2).
Proof.  Let   1 1 1 1(cos sin )z r i      and   2 2 2 2(cos sin )z r i   
Then,       1 2 1 2 1 2 1 2[cos ( ) sin ( )]z z r r i       
        1 2 1 2 1 2| | | | . | |z z r r z z 
Also,       1 2 1 2 1 2amp ( ) amp ampz z z z     
For any complex number z = x + iy
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we have  z x iy x iy       and   2 2Rez z x z z z     

Also     2 I 2m z zz z iy z i
   

Also        2 2( ) ( ) 0zz x iy x iy x y       always. The non-negative square
root of zz  is called modulus or the absolute value of the complex number z and denoted
by

            2| | | |z zz z z z   
Note that   | | | | and R ( ) | |z z z z 

11.4. DE-MOIVRE’S THEOREM
Statement of De Moivre’s Theorem.
If  is real and n is rational, then the value, or one of the values of

(cos + i sin )n is  cos n+ i sin n
Proof : Case I. When n is positive integer.
By actual multiplication, we have

(cos 1 + i sin 1) (cos 2 + i sin 2)
= cos 1 cos 1 – sin 1 sin 2 + i (sin 1 cos 2 + cos 1 sin 2)
= cos (1 + 2) + i sin (1 + 2) ...(1)
Again,   (cos 1 + i sin 1) (cos 2 + i sin 2) (cos 3 + i sin 3)

= [cos 1 + 2) + i sin (1 + 2)] (cos 3 + i sin 3)
= cos 1 + 2 + 3) + i sin (1 + 2 + 3)

Hence, by repeated multiplication and using of (1), we get
(cos 1 + i sin 1) (cos 2 + i sin 2)......... (cos n + i sin n)

= cos 1 + 2 +.........+ n) + i sin (1 + 2 +.........+ n)
Now put  1 = 2 = ......... n = 
We get,  (cos + i sin )n = cos n+ i sin n
Thus, if n is a positive integer,  (cos + i sin )n = cos n+ i sin n
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Case II. When n is a negative integer.
Let n = – m, where m will be a positive integer.
Then,   (cos + i sin )n = (cos + i sin )–m

1
(cos sin )mi   

1
cos sinm i m       by case I

cos sin
(cos sin ) (cos sin )

m i m
m i m m i m

        

2 2
cos sin

cos sin
m i m
m m
     

cos sinm i m   
cos( ) sin ( )m i m     
cos sinn i n   

Thus, if n is a negative integer.
(cos sin ) (cos sin ).ni n i n      

Case III. When n is a fraction, positive or negative.
In this case, we show that one of the values of

(cos  + i sin )n is  cos n + i sin n.

Let  n = ,p
q  where q is a positive integer, and p an integer positive or negative.

Suppose further that the fraction p
q  is in its lowest terms i.e., p and q have no

common factor.

Now   cos sin cos . sin . ,
qp p p pi q i qq q q q

                        by case I
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    cos sinp i p   
    (cos sin ) pi      by case I & II

     cos sinp piq q     is one of the qth roots of (cos  + i sin )p

i.e.,   cos sinp piq q    is one of the values of (cos  + i sin )p

Thus, if n is a fraction, positive or negative, then one of the values of (cos  + i
sin )n is cos n + i sin n.

Note 1.  It may be noted that if n is integral, then (cos + i sin )n has only one
value and this value is cos n + i sin n. On the other hand if n is fractional, then
(cos + i sin )n has several values and one of its value is cos n+ i sin n.

2.  De-Moivre’s theorem holds for all values of n and , real or complex, but we
have proved it only for real and rational n.

Cor.  If  n is integral,  (cos  – i sin )n = {cos (– ) + i sin (– )}n
= cos (– n) + i sin (– n) = cos n – i sin n

If n is fractional, one of the values of
(cos – i sin )n  is   cos n– i sin n).

Example 11.4.1.  Simplify 
5 3

7 5
(cos3 sin3 ) (cos sin )

(cos 5 sin 5 ) (cos 2 sin 2 )
i i

i i
     
      .

Solution.  The given expression
3 5 1 3
5 7 2 5

{(cos sin ) } {(cos sin ) }
{(cos sin ) } {(cos sin ) }

i i
i i




     
     

15 3
35 10

(cos sin ) (cos sin )
(cos sin ) (cos sin )

i
i i




           
= (cos  + i sin )15–3–35+10 = (cos + i sin )–13
= cos 13 – i sin 13.
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Example 11.4.2.  Simplify  

11
2

1
2

cos sin6 6
cos sin6 6

i

i

    
    

Solution.  The given expression is
11
2

1
2

cos sin6 6
cos sin6 6

i

i

    
    

11 1
2 2cos sin6 6i
      

6
cos sin6 6i

     
cos sini   

1 
Example 11.4.3.  Simplify the following :

(i)  6 8
4 7

(cos sin ) (cos3 sin3 )
(cos5 sin5 ) (cos2 sin 2 )

i i
i i

     
      (ii)  10(sin cos )i    .

Solution.  (i)  
6 8
4 7

(cos sin ) (cos3 sin3 )
(cos5 sin5 ) (cos2 sin 2 )

i i
i i

     
     

(cos6 sin 6 ) (cos24 sin 24 )
(cos20 sin 20 ) (cos14 sin14 )

i i
i i

            [Using De-Moivre’s Theorem]



138

cis6 . cis24
cis 20 . cis 14

    [ cos sin cisi     ]

cis (6 24 )
cis (20 14 )

      [ cis cis cis( )      ]

cis30 cis (30 34 )cis 34
    

cis cos ( )cis
       

cis ( 4 )  
cos 4 sin 4i    [ cis ( ) cos sini     ]

(ii)  10(sin cos )i   
10

cos sin2 2i
                  

cos 10 sin 102 2i                           [Using De-Moivre’s Theorem]

cos (10 5 ) sin (10 5i       
cos (5 10 ) sin (5 10i       
cos (4 10 ) sin (4 10i           
cos ( 10 ) sin ( 10i       

cos 10 sin10 .i    
Example 11.4.4. Prove that

1 sin cos cos sin ,1 sin cos 2 2
ni n nn i ni

                            where n is any integer..

Solution.  
2 21 sin cos sin cos sin cos

1 sin cos 1 sin cos
i i
i i

                       [Note it
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carefully]
2 2 2(sin cos ) (sin cos )

1 sin cos
i i

i
            2[ 1]i  

(sin cos ) [sin cos 1] sin cos1 sin cos
i i ii

             

cos sin2 2i               

    1 sin cos cos sin1 sin cos 2 2
n ni ii

                               

cos sin2 2
n nn i n                [Using De-Moivre’s Theorem]

which is to prove.

Example 11.4.5.  If  12cos ,x x    prove that  12cos r rr x x    where r is
a integer.

Solution.   12cos x x     gives   x2 – 2x cos   + 1 = 0

      22cos 4 cos 4 cos sin2x i       

Take   1 11cos sin (cos sin )x i x ix
          

Then,     1 (cos sin ) (cos sin )r r rrx i ix
        

(cos sin ) (cos sin )r i r r i r       
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2 cos r 

If  1 11cos sin , then (cos sin )x i x ix
         

then      1 (cos sin ) (cos sin )r r rrx i ix
        

(cos sin ) (cos sin )r i r r i r       
2 cos r  .

11.5. EXAMINATION ORIENTED OBSERVATIONS
1. If  z = cos + i sin , then prove that

(i)   1 2 cosz z   (ii)  1 2 sinz iz  

(iii)  1 2 cosn nz nz   (iv)  1 2 sinn nz i nz  

(v)  2
2

1 tan1
z iz

  
2. Simplify following :

(i)   (cos sin ) (cos sin )
(cos sin ) (cos sin )

i i
i i

     
     

(ii)   
10
12

(cos sin )
(cos sin )

i
i

  
  

(iii)   
5 2

18
(cos 2 sin 2 ) (cos3 sin 3 )
(cos 4 sin 4 ) (cos sin )

i i
i i

     
     

3. Prove that   (sin cos ) cos sin2 2
ni n i n                    and deduce
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1 sin cos cos sin1 sin cos 2 2
ni n i ni

                           

4. Prove that   1(1 cos sin ) (1 cos sin ) 2 cos cos2 2
n n n ni i n            .

5. If  a, b are roots of x2 – 2x + 4 = 0,  then  12 cos .3
n n n na b   

6. Evaluate
(i)  ( 3 ) ( 3 )n ni i   (ii)  (1 ) (1 )n ni i  

7. If  cos sin2 2r r rx i     then prove that  1 2 3..........upto infinity 1x x x  
where r = 1, 2, 3,.......

8. If   1 12 cos , 2 cosx yx y       then prove that

1 2 cos ( )m n m nx y m nx y    

11.6. TO FIND THE qTH ROOTS OF A NUMBER
Let  z = r (cos  + i sin ) be a given number.

We know that  
1
qz  has q values. We wish to find all the values.

Now,     
1 1 1

(cos sin )q q qz r i   
1 1

{cos (2 ) sin (2 )}q qr n i n        ,
when n is any integr, positive or negative, or zero.
By De-Moivre’s theorem one of the values of the right hand side is
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1 2 2cos sinq n nr iq q
        

Therefore, by giving n the values 0, 1, 2,......, q – 1
We see that each of the quantities

          
1 1 2 2cos sin , cos sinq qr i r iq q q q
                 

1 2( 1) 2( 1)........, cos sinq q qr iq q
          

is one of the values of z.
The number of these quantities is q and they are all distinct because all the angles

involed therein differ from one another by less than 2, and no two angles differing by
less than 2 have their cosines the same and also their sines the same.

Hence,  these are the q values of 
1

.qz
Note.  If we give n values beyond q – 1, we do not get any fresh value of z, the

same values are repeated.
For example, putting n = q, we get

1 2 2cos sinq q qr iq q
          

1
cos 2 sin 2qr iq q
                    

 
1

cos sinqr iq q
      ,

which is the same as the first value.
Note.  The polar form of

  1 = cos 0 + i sin 0
– 1 = cos  + i sin 
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– i = 3cos sin2 2i 
Example 11.6.1.  Find the cube roots of unity.
Solution.  1 = cos 0 + i sin 0
     1/3 1/3(1) (cos0 sin 0)i 

  1/3{cos (2 0) sin (2 0)}n i n      ,  n = 0, 1, 2

  2 2cos sin , 0, 1, 23 3
n ni n   

Putting n = 0, 1, 2, we get for the three cube roots

1, 2 2 4 4cos sin , cos sin3 3 3 3i i    

or 1, 1 3 1 3,2 2 2 2i i    .
Example 11.6.2.  Find all the values of (–1)1/3.
Solution.     – 1 = cos sini  
         1/3 1/3( 1) (cos sin )i    

1/3{cos(2 ) sin (2 )}n i n       
2 2cos sin3 3

n ni      
Putting n = 0, 1, 2, we get the required values

1 3 1 3cos sin3 3 2 2 2
i ii     

cos sin 1i    
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           5 5 1 3 1 3cos sin cos 2 sin 23 3 3 3 2 2 2
ii i i                       .

Example 11.6.3. Find all the values of 1/ 4(1 3) . 
Solution.  Let us first express

1 3 1 3i   
For trignometric form.
Let  1 3 (cos sin )i r i    
Then,  cos 1,r     and    sin 3r    .
These equations give r = 2.
Substituting for r, we get

1 3cos , sin ,2 2       which give 3
   .

      1 3 2 cos sin3 3i i                 

              
11 1 44 4(1 3) 2 cos sin3 3i i                 

11 442 cos 2 sin 23 3n i n                   , n = 0, 1, 2, 3

1
4 6 62 cos sin12 12

n ni          , n = 0, 1, 2, 3

Putting n = 0, 1, 2, 3, we get required values :
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1
42 cos sin12 12i     ,  

1
4 5 52 cos sin12 12i    

      
1 1
4 411 112 cos sin 2 cos sin12 12 12 12i i                           

    
1
42 cos sin12 12i      

    
1
42 cos sin12 12i      

     
1 1
4 417 17 5 52 cos sin 2 cos sin12 12 12 12i                            

    
1
4 5 52 cos sin12 12i      

    
1
4 5 52 cos sin12 12i      

On combining, we get four roots on

             
1 1
4 4 5 52 cos sin , 2 cos sin12 12 12 12i i                .

Example 11.6.4.  Solve the equation  7 4 3 1 0.x x x   
Solution.  The equation is  4 3( 1) ( 1) 0x x  
Taking the first factor, we get

 x4 + 1 = 0
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or  1/4 2 2( 1) cos sin .4 4
n nx i           (reference to example already

solved)
Putting n = 0, 1, 2, 3, we get the solutions

3 3 5 5 7 7cos sin , cos sin , cos sin , cos sin .4 4 4 4 4 4 4 4i i i i          
Taking the second factor, we get

x3 + 1  = 0

or       1/3 2 2( 1) cos sin3 3
n nx i         , n = 0, 1, 2

Putting n = 0, 1, 2, we get the solution
5 5cos sin , 1, cos sin3 3 3 3i i     

Hence all the roots are known.
Example11.6.5.  Find nth root of unity and prove that the sum of their pth powers

always vanishes unless p be a multiple of n, (p being and integer) and then sum is n.
Solution.  (1)1/n = (cos 0 + i sin 0)1/n
= [cos (2r + 0) + i sin (2r + 0)]1/n,  r = 0, 1, 2,.....,  n – 1

= 2 2cos sinr rin n
    where  r = 0, 1, 2, 3,........., n – 1

Putting r = 0, 1, 2,..........., n – 1, we get the n roots as
2 2 4 4 2( 1) 2( 1)cos0 sin 0, cos sin , cos sin ,........, cos sinn ni i i in n n n n n
          

The pth powers of the roots are
2 2 4 4 2( 1) 2( 1)(1) , cos sin , cos sin ,........, cos sin

p p pp n ni i in n n n n n
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or  2 2 4 4 2 ( 1) 2 ( 1)1, cos sin , cos sin ,........, cos sinp p p p p n p ni i in n n n n n
         

 or 1,  t, t2,...........,  tn–1  where   2 2cos sinp pt in n
  

Case I.  Assume that  p is not a multiple of n,
sum of roots = 1 + t + t2 + .........+ tn–1

      (1 )1 1
nt
t

       (1 )
1

n
n rs a r

    

or    1, 
2 1cos 2 2 2 2 2 2sin , cos sin ,........ cos sin

np p p p p pi i in n n n n n
                

1 2 21 cos sin1
np pit n n

           
1 [1 (cos2 sin 2 )]1 p i pt    
1 [1 (1 0)] 0.1 it   

Case II.   Assume that  p is a multiple of n. Sum of roots = 1 + t + t2 +.....+ tn–
1

     2 2 4 41 cos sin cos sin ...........p p p pi in n n n
                

 2 ( 1) 2 ( 1)cos sinp n p nin n
       

Take  p = kn, where k  is an integer.
1 (cos 2 sin 2 ) (cos 4 sin 4 ) ............k i k k i k         

[cos 2 ( 1) sin 2 ( 1) )]k n i k n     
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= 1 + (1 + 0) + (1 + 0) + ............. + (1 + 0)
= n.
Example 11.6.6.  Determine the nine roots of x9 – 1 = 0 by De-Moivre’s Theorem

and point out which of these roots satisfy x3 – 1 = 0.
Solution.  The given equation is   x9 – 1 = 0
       x9 = 1
        x = (1)1/9 = [cos 0 + i sin 0]1/9

        x = [cos (2k + 0) + i sin (2k + 0)]1/9, k = 0, 1, 2, 3, 4, 5, 6, 7, 8

        x = cos 2 2sin ,9 9
k ki     k = 0, 1, 2, 3,....... 8

The roots of equation (1) are

cos 0 + i sin 0,  cos 2 2sin ,9 9i 

cos 4 4 6 6sin , cos sin9 9 9 9i i    

cos 8 8 10 10sin , cos sin9 9 9 9i i     ,

cos 12 12 14 14sin , cos sin9 9 9 9i i    

cos 16 16sin9 9i 

i.e.  1,  cis 2 ,9
  cis 4 ,9

   cis 2 ,3
   cis 8 ,9

  cis 10 ,9
   cis 4 ,3

   cis 14 ,9
   cis 16

9


The second given equation is  x3 – 1 = 0 ...(2)
      x3 = 1          x = (1)1/3 = (cos 0 + i sin 0)1/3

  = (cos 2k + i sin 2k)1/3,  k = 0, 1, 2
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    2 2cos sin3 3
k ki      where k = 0, 1, 2

Putting k = 0,  x = cos 0 + i sin 0 = 1

k = 1,  x = cos 2
3
  + i sin 2

3
  = cis 2

3


k = 2,  x = cos 4
3
  + i sin 4

3
  = cis 4

3


Hence the roots of equation (1) are

cis 2 ,9
k   k = 0, 1, 2, 3,....... 8

and common roots of equations (1) and (2) are

1,  cis 2 ,3
   cis 4

3


Example 11.6.7. If  is a non-real root nth roots of 1, show that
1 +  + 2 +.......+ n–1 = 0.

Solution.  Let  z = 1 = cos 0 + i sin 0
   z1/n = 11/n = (cos 0 + i sin 0)1/n
       = [cos (0 + 2k) + i sin (0 + 2k)]1/n,  k = 0, 1, 2,....., (n – 1)

       = 2 2cos sin ,k kin n
    where k = 0, 1, 2,....., (n – 1).

Let  2 2cos sink kin n
     such that  is non-real roots of unity..

Hence  2 21 1 cos sink kin n
           is a non-zero number

Now L.H.S.
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2 1 1.(1 )1 ....... 1
nn                  (1 )Sumof termsof G.P. 1

nrn a r
    

      
2 21 cos sin

a non-zero number

nk kin n
      1 (cos 2 sin 2 )

a non-zerono.
k i k   

1 (1 0 )
a non-zerono.

i 
= 0  R.H.S.

11.7. EXAMINATION ORIENTED EXERCISE
1.  Find cube root of unity.
2.  Evaluate the following :

 (i) 1/6(1 )i (ii) 1/3( 3 )i
3.  Find the values of 1/6( )i .
4.  Find all the values of

 (i)  2/3(1 3)i  (ii) 
1
4cos sin3 3i     (iii)  1/ 4( 16 )i

5. Find the continued product of the four values of  
3
4cos sin3 3i     .

6. Find the four fourth roots of  2 2cos sin3 3i  .

7. Find all the values of  
3
41 3 ,2 2 i      and show that their continued product is

unity.
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8. (i) Show that the nth roots of unity form a G.P.
(ii) How many of the n, nth roots of unity are real ?

9. Find the five fifth roots of unity & prove that the sum of their nth power always
vanishes unless n be a multiple of 5, n being an integer, and when n is a multiple
of 5, the sum is 5.

10. Find all the roots of equation
(i) x7 + 1 = 0 (ii) x9 – x5 + x4 – 1 = 0
(iii) x4 + x3 + x2 + x + 1 = 0

11. Show that the roots of equation
1( 1) , Z , are 1 cot ,2

n n hx x n i n          where h = 0, 1,......., n – 1.
12. Solve x12 – 1 = 0 and find which of the roots satisfy the equation x4 + x2 + 1

= 0.
13. Show that roots of equation

(5 + x)5 – (5 – x)5 = 0  are   5i on ,5
k  where k = 0, 1, 2, 3, 4.

14. Use De-Moivre’s theorem to solve
(i)  x4 – x3 + x2 – x + 1 = 0 (ii) x7 + x4 + x3 + 1 = 0.

11.8. APPLICATION OF DE-MOIVRE’S THEOREM
Now we discuss some applications of De-Moivre’s theorem.
I. Trignometric ratios of Multiple angles.
By the use of De-Moivre’s theorem we can obtain the expansion of cos n and sin

n in terms of powers of cos , sin , when n is a positive integer. Also, we can obtain
tan n in terms of powers of tan .

Now,  cos n+ i sin n = (cos + i sin )n, by De-Moivre’s theorem.
Expanding the R.H.S. by Binomial theorem, we get
cos n + i sin n = cosn  + nC1 cosn–1  (i sin ) +  nC2 cosn–2 

+ (i sin )2 + .......... + (i sin )n
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= {cosn  – nC2 cosn–2  sin2  +......}
+ i {nC1 cosn–1  sin  – nC3 cosn–3  sin3 +.......+ in–1 (sinn )}

Hence, equating real and imaginary parts, we get
cos n = cos n – nC2 cosn–2  sin2  + ...(1)

and  sin n = nC1 cosn–1  sin  – nC3 cosn–3  sin3  + ...(2)
Each series continues till the co-efficients vanish.
From equation (1) and (2), we have, by division,

tan n = 
1 3 31 2 2 22

C cos sin C cos sin ........
cos C cos sin .....

n n n n
n n n
 


     
    

Dividing the numerator and the denominator of the right-hand side by cosn , we get
33 22

tan C tan .......tan 1 C tan .....
n

n
nn       ...(3)

Cor.   Putting n = 2, 3, we get

2
2 tantan 2 1 tan

            and    3
2

3tan tantan3 1 3tan
     

Note.  We expanded (cos  + i sin )n by Binomial Theorem.
Is this expansion valid ? Yes, it is valid.
The Proof of the Binomial theorem.

      1 2 21 2( ) C C ........n n n n n n nx a x x a x a a      
where x and a are real and n is a positive integer, depends only on the ordinary laws

of Algebra.
Complex numbers also obey these laws. Hence the theorem holds even when x and

a are complex numbers.
Example 11.8.1.  Expand (i) cos 80 in descending powers of cos .

(ii) sin8
cos


  in ascending powers of sin .
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Solution.  (i) We can write by De-Moivre’s theorem,
cos 8 + i sin 8 = (cos  + i sin )8 ...(1)

Expand the R.H.S. of (1) by Binomial Theorem
cos 8 + i sin 8 = cos8  + 8C1 cos7  (i sin ) + 8C2 cos6  (i sin )2

+ 8C3 cos5  (i sin )3 + 8C4 cos4  (i sin )4 + 8C5 cos3  (i sin )5
+ 8C6 cos2  (i sin )6 + 8C7 cos  (i sin )7 + 8C8 (i sin )8

= cos8  + 8 cos7  (i sin ) – 28 cos6  sin2  + i (56) cos5  sin3 
+ 70 cos4  sin4 + i (56) cos3  sin5  – 28 cos2  sin6 – 8 i cos  sin7 + sin8


cos 8 + i sin 8= (cos8  – 28 cos6  sin2  + 70 cos4  sin4 
– 28 cos2  sin6 + sin8 ) + i (8 cos7  sin  – 56 cos5  sin3 

+ 56 cos3  sin5  – 8 cos  sin7 )    ...(2)
Equating real and imaginary parts, we get
cos 8 = cos8  – 28 cos6  sin2  + 70 cos4  sin4  – 28 cos2  sin6 + sin8

 ...(3)
and  sin 8 = 8 cos7  sin – 56 cos5 sin3  + 56 cos3 sin5 – 8 cos  sin7  ...(4)

Putting in R.H.S. of (3),  sin2 = 1 cos2 , we have
cos 8 = cos8  – 28 cos6  (1 – cos2 ) + 70 cos4  (1 – cos2 )2

– 28 cos2  (1 – cos2 )3 + (1 – cos2 )4
     = cos8  – 28 cos6  (1 – cos2 ) + 70 cos4  (1 – 2 cos2  + cos4 )

– 28 cos2  (1 – 3 cos2  + 3 cos4  – cos6 )
– (1 – 4 cos2  + 6 cos4  – 4 cos6  + cos8 )

cos 8 = 128 cos8  – 256 cos6 + 160 cos4  – 32 cos2 + 1    ...(5)
(i) Dividing both sides of (4) by cos , we obtain

     6 4 3 2 5 7sin8 8 cos sin 56cos sin 56 cos sin 8 sincos
             ...(6)

Putting cos2  = 1 – sin2  in R.H.S. of (6), we get
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2 3 2 2 3 2 5 7sin8 8 (1 sin ) sin 56 (1 sin sin 56(1 sin ) sin 8 sincos
              

    = 8 (1 – 3 sin2  + 3 sin4  – sin6 ) sin 
– 56 (1 – 2 sin2 + sin4 ) sin3 + 56 (1 – sin2 ) sin5  – 8 sin7 

3 5 7sin8 8 sin 80 sin 192 sin 128 sin .cos
        

11.9. EXAMINATION ORIENTED EXERCISE
Prove that
1. cos 3 = – 3 cos  + 4 cos3
2. cos 4 = cos4  – 6 cos2  sin2  + sin4  = 8 cos4  – 8 cos2  +1
3. cos 7 = cos7  – 21 cos5  sin2  + 35 cos3  sin4  – 7 cos  sin2 
4. sin 3 = 3 sin  – 4 sin 

5. 5 3sin 6 32 cos 32 cos 6cossin
      

6. 2 4 6sin 7 1 56 sin 112 cos 64sinsin
       

Write down, in terms of  tan , the values of
7. tan 4
8. tan 5.

11.10. PASCAL’S RULE FOR WRITING THE BINOMIAL
COEFFICIENTS

1.  The series of coefficients in successive powers of 1x x
     beginning with index

1 are as follows :
11x x

    1 1
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21x x
    1 2 1

31x x
    1 3 3 1

41x x
    1 4 6 4 1

51x x
    1 5 10 10 5 1

61x x
    1 6 15 20 15 6 1

71x x
    1 7 21 35 35 21 7 1

81x x
    1 8 28 56 70 56 28 8  1 etc.

2. The series of coefficients in successive powers of 1x x
     beginning with index

1 ar as follows :
11x x

    1 –1

21x x
    1 –2 1

31x x
    1 –3 3 –1

41x x
    1 –4 6 –4 1
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51x x
    1 –5 10 –10 5 –1

61x x
    1 –6 15 –20 15 –6 1

71x x
    1 –7 21 –35 35 –21 7 –1

81x x
    1 –8 28 –56 70 –56 28 –8 1
etc.

11.10.1. To express sinn , cosn  in terms of sines and cosines of multiple of ,
when n is a positive integer.

Cosn .
Let  x = cos + i sin 
Then   1 cos sinix    

     (cos sin ) cos sinn nx i n i n       

and   1 (cos sin ) cos sinnn i n i nx        

     1 12 cos , 2 sinx x ix x     

     1 12 cos , 2 sin .n nn nx n x i nx x     

Hence,  1(2 cos )
nn x x

     
1 21 2 2

1 12 cos C . C . .....n n n n n n nx x xx x
      22 12 1

1 1 1C . C .n nn nn n nx xx x x    
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21 21 2
1 1 1C C ........,n n n n nn n nx x xx x x

 
                     

pairing terms with equal co-efficients

= 2 cos n + n  2 cos( 1)n     + ( 1)
2!

n n    2 cos( 2)n    + .......

or      2n–1 cosn  = cos n + n cos (n – 2)  + ( 1)
2!

n n   cos (n – 2)  +.......
Example 11.10.2.  Express cos8  in a series of cosines of multiples of .

(J.U. 1988, 93)

Solution.  
88 1(2 cos ) x x

     
8 8 8 6 4 2 2 4 6 8

56 28 8 12 cos 8 28 56 70x x x x x x x x         

8 6 4 28 6 4 2
1 1 1 18 28 56 70x x x xx x x x

                             
= 2 cos 8 + 8 (2 cos 6) + 28 (2 cos 4) + 56 (2 cos 2) + 70.
    27 cos8  = cos 8+ 8 cos 6 + 28 cos 4 + 56 cos 2 + 30.

11.11. EXAMINATION ORIENTED EXERCISE
Prove the following :

1. 26 cos7  = cos 7 + 7 cos 5 + 21 cos 3 + 35 cos .
2. 28 cos9 = (cos 9 + 9 cos 7 + 36 cos 5 + 84 cos 3 + 126 cos )
3. 27 sin8 = (cos 8 – 8 cos 6 + 28 cos 4 – 56 cos 3 + 35)
4. 25 sin6  cos2 = cos 6 – 2 cos 4 – cos 2 + 2
5. 26 sin3 cos4 = sin 7 – 3 sin 5 + sin 3 + 5 sin 

11.12. SUGGESTED READING
Students are advised to go through following references for details.

11.13. REFERENCE
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(1) Functions of a Complex Variables by Goyal and Gupta, Pragati Prakashan,
Meerut.

(2) Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser,
2006.

(3) A text Book of Real and Complex Analysis by Sunil Gupta, Udhay Banu,
Ashok Kumar, Narinder Sharma, Malhotra Brothers, Pacca Danga, Jammu.

(4) James Ward Brown and Ruel V. Churchill, Complex Variables and Applica-
tions, 8th Ed., McGraw – Hill International Edition, 2009.

11.14. MODEL TEST PAPER
1. (a) Prove that n – nth roots of unity form a series in G.P.

(b) Expand sin9  in series of sines of multiples of . (J.U. 1995)

 2. (a) Prove that  (1 + i)n + (1 – i)n = 122 cos 4
n n    

(b) 1 sin cos cos sin1 sin cos 2 2
ni n i ni

                                          (J.U. 1995)

3. (a) Prove that seventh roots of unity form a series in G.P.
(b) Prove that

     (1 + cos  + i sin )n + (1 + cos  – i sin )n 12 cos cos2 2
n n n    (J.U. 1995)

4. (a) Prove that    2 2 12( ) ( ) 2 ( ) cos tan
m m m
n n n m ba ib a ib a b n a

        
(b) Find all the values of (1 – i)1/3. (J.U. 1995)

5. (a) Prove that  sin 7 = 7 sin – 56 sin3 + 112 sin5  – 64 sin7 
(b) Expand sin8  in a series of cosines of multiples of .

6. (a) If  1 2 cos ,x x    then prove that  4 4
1 2 cos 4x x  

(b) Find all the values of 
1
4( 1) . (J.U. 1994)

7. (a) Prove that  1 sin cos cos sin1 sin cos 2 2
ni n nn i ni
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B.A. SEM–IV MATHEMATICS LESSON No. 12

COMPLEX FUNCTIONS
12.1. Introduction : In this lesson the concept of Functions of Complex Variables
particularly exponential and trigonometric functions are discussed.
12.2 Objectives : Objective of studying this lesson is to explain the behavour of
exponential and trigonometric functions when they defined on complex domains.
12.3. FUNCTION OF COMPLEX VARIABLE3

In elementary calculus we introduced real-valued functions of real variables. That is,
we discussed the function y = f(x), where x takes only real values and the corresponding
values of y are also real.

In particular, we defined the trignometric functions sin x, cos x, etc. the exponential
function ex, and the logarithmic function log x.

Now we define these functions for complex z, i.e. z is allowed to take complex values
and the corresponding values of w are also permitted to be complex.

Let us take an example of a complex valued function of a complex variable.
Consider w = z2, where z = x + iy.
Thus, w = (x + iy)2 = (x2 – y2) + 2 ixy
If we give any value of to z, say we put z = 3 + 4i, the corresponding value of w

is  w = (9 – 16) + 2i 3.4 = –7 + 24i, which is also complex.
Thus, w is a complex valued function of a complex variable z.
12.3.1. The exponential function ez.
We know that

                  ex = 
2 3 41 ......1 2 3 4

x x x x     ...(1)



160

where x  R &

                  e = 1 1 1 11 ......1 2 3 4     ...(2)
The expression (1) is called exponential function of x &

        1 1 1 11 ...... ......1 2 3
x

n
          

2 31 ......2 3
x xx     ...(3)

We know a real number is a particular case of complex number. Therefore we
define exponential function of a complex quantity z C & write it as E(z) or exp. (z)
or ez i.e.

           ez = exp. (z) = E(z) = 2 31 ........2! 3!
z zz    ...(4)

Some authors define ez, z = x + iy, x, y  R as
           ez = ex+iy = ex. eiy = ex (cos y + i sin y)
12.3.2. Properties of exponential function ez.
Property 1. exp. (z1) exp (z2) = exp (z1 + z2)
Proof. By definition of exponential functions of complex quantity

      exp (z1) = 1 + z1 + 
2 3 41 1 1 ......2 3 4

z z z  

      exp (z2) = 1 + z2 + 
2 3 42 2 2 ......2 3 4

z z z  
Since the above series are convergent or have finite and unique sum, let them get

multiplied.
Grouping together the terms of the same degree in z1 & z2 we have

     exp. (z1) exp (z2) = 1 + (z1 + z2) + 
2 21 21 2 ......2 2

z zz z      

                        = 1 + (z1 + z2) + 
2 31 2 1 2( ) ( ) ....2 3

z z z z  
                        = exp. (z1 + z2)
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Alternate method.
Let z1 = x1 + iy1 and z2 = x2 + iy2.
Then,   1 2 1 1 2 2z z x iy x iye e e e   
                 = 1 21 1 2 2.(cos sin ). .cos( sin )x xe y i y e y i y 
                 = 1 2 1 2 1 2{cos( ) sin( )}x xe y y i y y    
                 = 1 2 1 2( ) ( )x x i y ye   

                 = 1 2z ze 
Cor 1. The result may be generalized as :
                     1 21 2 ( ..... )............ n nz z z zz ze e e e    
Putting z1 = z2 ........... = zn = z, we get
     (ez)n = enz.
Thus, if n be a positive integer, then  (ex)n = enz.
Cor 2.  1 2 2 1 2 2 1( )z z z z z z ze e e e    

              1 1 2
2

z z zz
e ee


Cor 3.  ez.e–z = ez+(–z) = e0 = 1

         e–z = 1
ze

12.3.3. Theorem : ez is periodic with period 2i.
Proof.  2 ( ) 2z i x iy ie e    
                = ( 2 )x i y ie   
                = ex [cos (y + 2) + i sin (y + 2)]
                = ex. (cos y + i sin y)
                = ex+iy = ez.
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 ez is periodic with period 2i.
12.3.4. Euler’s Exponential values for sin x and cos x.
We know that
                   ex+iy= ex (cos y + i sin y)
Putting x = 0, we get
                    eiy = cos y + i sin y ...(1)
Changing y to –y, we get
                   e–iy = cos y – i sin y ...(2)
Adding, we get
            eiy + e–iy = 2 cos y

or              cos y = 1 ( )2 iy iye e ...(3)
Similarly, subtracting we get
            eiy – e–iy = 2 i sin y

or               sin y = 1 ( )2 iy iye ei  ...(4)
The formulae (3) and (4) express the sine and cosine of a real variable in terms of

the exponential function and are due to the mathematician Euler.
12.4. THE COMPLEX CIRCULAR FUNCTIONS sin z, cos z.

Again we want to define sin z and cos z in such a manner that they may obey the
same laws as sin x and cos x.

By Euler’s formula.

            cos x = 1 ( )2 ix ixe e   and      sin x = 1 ( )2 ix ixe ei 
We take these as the definitions of cos z and sin z.
Thus,

12.4.1. Definition. cos z = 1 ( )2 iz ize e  and sin z = 1 ( )2 iz ize ei 
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Note. The other circular functions are defined as in the case of real ariable.

Thus, tan z = sin cos 1 1,cot ,sec ,andcoseccos sin cos sin
z zz z zz z z z  

12.4.2. Remark. We have   cos z = 1 ( )2 iz ize e   and    sin z = 1 ( )2 iz ize ei 
There are two equation given
               eiz = cos z + i sin z.
and          e–iz = cos z – i sin z.
2.4.3. Example. Prove that
            {sin ( + ) – ei sin }n = sinn.e–ni
Solution. L.H.S. = {(sin  cos  + cos  sin ) – (cos  + i sin ) sin ]n
                  = (sin  cos  – i sin  sin )n
                  = sinn  (cos  – i sin )n
                  = sinn .(e–i)n
                  = sinn . e–ni
12.4.4. Example. Prove that for complex z
                    cos2z + sin2z = 1.

Solution.  cos2z + sin2z = 
2 2

2 2
iz iz iz ize e e e

i
           

                         = 2 2( ) ( )
4 4

iz iz iz ize e e e  

                         = 1 4 . 14 iz ize e  .
12.4.5. Example. Apply the exponential values of sine and cosine to show that :
(i) sin 2z = 2 sin z cos z.
(ii) cos 2z = 1 – 2 sin2z = 2 cos2 z – 1
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(iii) cos 3z = 4 cos3 z – 3 cos z.

Solution. As we know sin z = 2
iz ize e

i
   and   cos z = 2

iz ize e
i


(i) L.H.S. = sin 2z = 2 2
2

iz ize e
i
  = 2 22[( ) ( ) ]

4
iz ize e

i


          = ( )2 2 2
iz iz iz ize e e e

i
       = 2 sin z cos z.

(ii) As sin z = 2
iz ize e

i


      1 – 2 sin2z = 1 – 2 
2

2
iz ize e

i
   

                     = 2 22
21 2 .4

iz iz iz ize e e ei
     

                         = 2 211 22 iz ize e    

                         = 
2 21 12

iz ize e    
                         = cos 2z

Also      2 cos2 z – 1 = 2 
2

12
iz ize e    

                         = 2 21 2 . 22 iz iz iz ize e e e     

                         = 2 21 2 22 iz ize e    
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                         = 2 2 cos 22
iz ize e z 

(iii) L.H.S.      cos 3z = 3 3
2

iz ize e

                         = 3 3( ) ( )
2

iz ize e

                         = 31 ( ) 3 . ( )2 iz iz iz iz iz ize e e e e e      
3 3 3( ) 3 ( )a b a b ab a b      

                         = 
3

4 32 2
iz iz iz ize e e e           

                         = 4 (cos z)3 – 3 cos z
                         = 4 cos3z – 3 cos z = R.H.S.

12.5. SUGGESTED READING
The students are advised to go through following references for details.

12.6. REFERENCES
(1) Functions of a Complex Variables by Goyal and Gupta, Pragati Prakashan,

Meerut.
(2) Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser,

2006.
(3) A text Book of Real and Complex Analysis by Sunil Gupta, Udhay Banu, Ashok

Kumar, Narinder Sharma, Malhotra Brothers, Pacca Danga, Jammu.
(4) James Ward Brown and Ruel V. Churchill, Complex Variables and Applications,

8th Ed., McGraw – Hill International Edition, 2009.
12.7. MODEL TEST PAPER

1. Separate into real and imaginary parts 15 2 ie  
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2. Prove that   sin ( + n) – ei sin n = e–ni. sin .
Prove that for complex x.

3. sin (–x) = –sin x
4. cos (–x) = cos x.
5. cos 2x = cos2x – sin2x = 2 cos2x – 1 = 1 –2 sin2x.
6. sin 3x = 3 sin x – 4 sin3x.
7. cos 3x = 4 cos3x – 3 cos x.
8. sin 2x = 2 sin x cos x.

Prove that for complex x and y.

9. sin x + sin y = 2 sin cos2 2
x y x y 

10. cos x + cos y = 2 cos cos2 2
x y x y  .

*********
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B.A. SEM–IV MATHEMATICS L ESSON No. 13
FUNCTIONS OF COMPLEX VARIABLE

13.1. Introduction : In this lesson the concept of Functions of Complex Variables
particularly hyperbolic, inverse hyperbolic and their relation with logarithmic functions
are discussed.
13.2 Objectives : Objective of studying this lesson is to explain the properties of
hyperbolic, inverse hyperbolic and their relation with logarithmic functions.
13.3. HYPERBOLIC FUNCTIONS

13.3.1. Definition. For real or complex z, 2
z ze e   is called the hyperbolic cosine

of z and written as cosh z.

Similarly 2
z ze e  is called the hyperbolic sine of z and written as sin h z.

Thus, cosh z = 2
z ze e   and  sinh z = 2

z ze e .
The hyperbolic tangent, contangent, secant and cosecant are defined terms of the

hyperbolic sine and cosine and in the same manner as the ordinary tangent, cotangent,
secant, and cosecant in terms of the ordinary sine and cosine.

Thus, tanhz = sinh
cosh

z z
z z

z e e
z e e




 

     cot h z = 1
tanh

z z
z z

e e
z e e
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     sec h z = 1 2
cosh z zz e e 

    cosech z = 1 2
sinh z zz e e 

Cor. sin h o = 1 1 02 2
o oe e  

      cosh o = 1 1 12 2
o oe e  

      tanh o = sinh 0cosh
o
o  .

Thus, sin h o = 0, cosh o = 1, tanh o = 0.
Again,

                 sinh(–z) = 
( ) sinh .2 2 2

z z z z z ze e e e e e z             

               cosh (–z) = ( ) cosh2 2
z z z ze e e e z      .

               tanh (–z) = sinh( ) sinh tanhcosh( ) cosh
z z zz z

    .
Thus, sinh (–z) = –sinh z, cosh (–z) = cosh z, and tan h (–z) = –tan h z.
13.3.2. Relation between Circular and Hyperbolic Functions.

                sin (iz) = ( ) ( )
2

( )
2 2 2

i iz i iz z z z ze e e e i e e
i i i
     

                         = 1( ) ( ) .sinh .2 2z z z zi e e i e e i z      

Again,          cos (iz) = ( ) ( ) cosh2 2
i iz i iz z ze e e e z   
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Finally,          tan (iz) = sin( ) sinh .tanh .cos( ) cosh
iz i z i ziz z 

Thus,    sin (iz) = i sin h z.
         cos (iz) = coshz,
and      tan (iz) = i tan hz.
13.3.3. Formulae in hyperbolic functions.
Corresponding to formulae in circular functions there are formula in hyperbolic

functions.
These can be obtained directly from the definitions of hyperbolic functions or from

the above relations between the circular and hyperbolic functions.
13.3.4. Example. cosh2z – sin h2z = 1

Solution.   cosh2z – sinh2z = 
2 2

2 2
z z z ze e e e           

                             = 2 2 2 22 2 14 4
z z z ze e e e      .

13.3.5. Example. sin h (x + y) = sin h x cosh y + cosh x + sinh y.
Solution.  It is easier to obtain the result by the second method.
For all u and v we have
               sin (u + v) = sin u cos v + cos u + sin v.
Let  u = ix and v = iy.
We obtain
              sin i(x + y) = sin ix cos iy + cos ix sin iy
or,         i sin h(x + y) = i sinh x cos h y + cosh hx.i sin h y
Cancelling out i, we get the result.
Note. Since cos (ix) = coshx, it follows that any general formula which is true for

cosines of angle is also true if instead of cos we write cosh.
Again, since sin (iy) = i sin h y, it follow that sin2(iy) = –sinh2y and so any formula

involving the cosines and the square of the sine of an angle is true if for cos we write cosh
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and for sin2 we write sinh2.
Similarly, we may prove a formula involving tan2 into another by writing tanh2 for

tan2.
13.3.6. Period of the hyperbolic functions :
     cosh z = cos iz = cos (–2 + iz),  _ cos z is periodic  with period 2.
            = cos i (2 i + z)
            = cos h (2 i +z)
_ cos h z is periodic with period 2i.
Second Method

 cosh z = 2
z ze e

= 2 21 ( . . )2 z i z ie e e e       2 2 2
1cos2 sin 2 1Also, 1i i ie i e e

   
         

        =  2 ( 2 )z i z ie e    
        = cos h (z + 2 i)
Hence, the result
Again,    i sin h z = sin (iz)
                    = sin (–2 + iz)
                    = sin i (2i + z)
                    = i sin h (2i + z)
           sinh z = sin h (2i + z)
Hence, the period of sin h z is 2i.
Finally,   i tan h z = tan (z)
                   = tan (– + iz),       _ tan z is periodic
                   = tan i (i + z)
                   = i, tan h (i + z)
        tan h z = tan h (i + iz)
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Hence, period of tan h z is i.
13.3.7. Series expansions of sinh z and cosh z.

  cosh z = 1 ( )2 z ze e

         = 
2 3 2 31 1 ....... 1 ........2 2! 3! 2! 3!

z z z zz z                      ...(A)

         = 2 41 .........2! 4!
z z  

 sin h z = 1 ( )2 z ze e

         = 3 5 .........3! 5!
z zz   

Note : Here again we have assumed that we can combine the terms of two infinite
series in (A).

13.3.8. Example. Separate the following into real and imaginary parts :
(a) sin ( + i) (b) tan ( + i)
(c) cos h ( + i) (d) cot h ( + i)
Solution. (a) sin ( + ) = sin  cos (i) + cos  sin (i)

= sin  cos h  + i cos  sin h .

(b) tan (a + i) = sin( )
cos( )

a i
i

 
  

                  = 2sin( )cos( )
2cos( )cos( )

i i
i a i

     
    

                  = sin 2 sin 2
cos 2 cos 2

i
i

  
  

                  = sin 2 sinh 2
cos 2 cosh 2

i  
  



172

Note : We express tan in terms of sin and cos.
Second Method.
Let    tan ( + i) = x + iy ...(1)
Then, tan ( – i) = x – iy ...(2)
Now, adding (1) and (2), we get
                 2 = tan ( + i) + tan ( – i)

  = sin( ) sin( )
cos( ) cos( )

i i
i i

          

  = sin( )cos( ) cos( )sin( )
cos( )cos( )

i i i i
i i

            
     

  = 
sin( ) 2sin 2
1 cos 2 cosh 2[cos2 cos 2 )2

i i
i

            

                 x = 2sin 2
cos 2 cosh 2


  

Similarly substracting (2) from (1), we get

y = 2sinh 2
cos 2 cosh 2


   .

(c) cosh ( + i) = cos i ( + i) = cos (i – )
= cos i cos  + sin i sin 
= cos h  cos  + i sin h  sin .

Note. We express cosh in terms of cosh.
(d) i coth ( + i) = cot i( + i) [_ cot iz = i coth z]

 = cot (i – )

 = cos( ) 2sin( )
sin( ) 2sin( )

i i
i i
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 = sin 2 sin 2
cos 2 cos 2

i
i

  
  

 = sin 2 sin 2
cos 2 cosh 2
i   

  

 = (sin 2 sin 2 )
cos 2 cosh 2

i i  
  

   coth ( + i) = sinh 2 sin 2
cos 2 cosh 2

i  
  

13.3.9. Example. If sin (A + iB) = x + iy, prove that  2 2
2 2 1sin A cos A

x y  .
Solution. x + iy = sin (A + iB)

       = sin A cos h B + i cos A sin h B
[By separating R.H.S. into real and imaginary parts]

 Equating real and imaginary parts,
                x = sin A cos B ...(i)
                y = cos A sin h B ...(ii)
We get the desired result by eliminating B from (i) and (ii).

From (i), cosh B = sin A
x

and from (ii), sin h B = cosA
y

                cosh2B – sinh2B = 2 2
2sin A cos A

x y
 

i.e.                               1 = 2 2
2 2sin A cos A

x y .
(Note that to eliminate B we have made use of the formula cosh2B – sinh2B = 1).
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13.3.10. Example. Show that   
31 tanh cosh 6 sinh 6 .1 tanh

x x xx
     

Solution. L.H.S. = 
31 tanh

1 tanh
x
x

   

                  = 
3

3sinh1 cosh sinhcoshsinh cosh sinh1 cosh

x
x xxx x x

x

           

                  = 
3

2 3 6( )x x xx
e e ee

     
                  = cosh 6x + sinh 6x = R.H.S.

13.4. EXAMINATION ORIENTED EXERCISE
1. Prove that

(i) cos h ( + ) = cosh  cos h  + sinh  sin h.
(ii) sinh 3x = 3 sin h x + 4 sinh3x

(iii) tan 3x = 3
2

3tanh tanh
1 3tanh

x x
x




2. tan ( + ) = tan tanh
1 tanh tanh

  
   

3. cosh ( + ) – cosh ( – ) = 2 sin h sin h
4. (i) 2 sin h A cos B = sin h (A + B) + sinh (A – B).

(ii) show that  log cos( )
cos( )

x iy
x iy

     is purely imaginary..
5. If tan y = tan  tanh  and tan z = cot  tanh , prove that

 tan (y + z) = sinh 2  cosec 2.
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6. If cosh x = sec , prove that tanh2 2tan2 2
x  .

13.5. THE COMPLEX INVERSE CIRCULAR FUNCTION
13.5.1. Inverse cosine.
If cos (x + iy) = u + iv,  then x + iy is defined as an inverse cosine of u + iv.
But cos (x + iy) = cos [2n ± (x + iy)], so that  2n ± (x + iy) is also an inverse

cosine of u + iv where n is an integer including zero.
The inverse cosine of u + iv is thus a many valued function. When the many-valued

ness of inverse cosine is considered it is written cos–1 (u + iv).
The principal value of the inverse cosine of u + iv is that value whose real part lies

between  and  This value is denoted by cos–1(u + iv).
Thus, we write  cos–1(u + iv) = 2n ± (x + iy) = 2n ± cos–1 (u + iv), to indicate

that all the values of the inverse cosine of (u + iv) are obtained from the expression 2n
± cos–1(u + iv), where cos–1 (u + iv) denotes the principal value of the inverse cosine of
u + iv and n is any integer, including zero.

13.5.2. Inverse sine.
If u + iv = sin (x + iy) = sin [n + (–1)n (x + iy)], then n+ (–1)n (x + iy),is an

inverse sine of u + iv. It is a many valued function and is denoted by sin–1 (u + iv).

Its principal value is such that its real part lies between 2
  and 2

 .
This value is denoted by sin–1 (u + iv).
13.5.3. Inverse tangent.
If u + iv = tan (x + iy) = tan [n + (x + iy)], then n + (x + iy) is an inverse tangent

of u + iv. It is written as tan–1(u + iv).

Its principal value is such that its real part lies between 2
  and 2

 .
Thus,   tan–1(u + iv) = n + tan–1(x + iy)
Similarly, cot–1 (u + iv) = n + cot–1(x + iy)
          sec–1(u + iv) = 2n + sec–1 (x + iy),
and     cosec–1(u + iv) = n + (–1)ncosec–1(x + iy).
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13.5.4. Example. Separate tan–1 ( + i) + x + iy
Solution. Let tan–1 ( +i) = x + iy
Then,           tan (x + iy) =  + i ...(i)
               tan (x – iy) =  – i. ...(ii)

     tan [(x + iy)  + (x + iy)] = ( ) ( )
1 ( )( )

i i
i i

      
      

or                         tan 2x = 2 2
2

1


   

                              1 2 2
1 2tan2 1x      

Again,     tan (x + iy – x – iy) = ( ) ( )
1 ( )( )

i i
i i

      
      

or                       tan (2iy) = 2 2
2

1
i

   

or,                         tanh2y = 2 2
2

1


   

                              1 2 2
1 2tanh2 1y      

Henec, x + iy = 1 12 2 2 2
1 2 2tan tanh2 21 1

i          .

13.6. EXAMINATION ORIENTED EXERCISE
Separate into real and imaginary parts.
1. sin–1 (cos  + i sin )s, where  is a positive angle < .
2. tan–1 (cos  + i sin ).

3. Prove that   sin–1 (cosec ) =   12 ( 1) ( 1) cosh (cosec )2n nn i      , when 
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lies between  and .
4. cos–1 (sec ) = 2n ± i cosh–1(sec ), if sec  is positive = (2n + 1)

+ i cosh–1 (–sec), if sec  is negative.

5. tan–1 (cos + i sin ) = n± 1tanh (sin )4 2
i   

According as cos  its positive or negative.
Prove that

6. If a = ib = sin–1 (cos  + i sin ), then cos2a = sinh2b.
7. If a = ib = cos–1 ( + ), then  2sec2 a + 2 cosec2 a = 1

and 2 sech2 b + 2 cosech2 b = 1.

8. Prove that  tan–1 1tan 2 tanh 2 tan tantantan 2 tan 2 tan tanh            = tan–1(cot  coth ).
13.7. INVERSE HYPERBOLIC FUNCTIONS.

If sinh u = z, then u is called an inverse sinh of z and written as sinh–1 z.
Similarly other inverse hyperbolic functions can be defined.
It can be shown that if z is real, then sinh–1z, cosh–1 tanh–1z, etc are single-valued.

On the other hand, if z is complex, these functions are many valued.
13.7.1. Logarithmic expressions for real inverse hyperbolic functions sinh–1x.
Let sinh–1 x = y

Then,   x = sinh y = 2 1
2 2

y y y
y

e e e
e

 
         2 2 1 0y ye xe   .
Solving it as a quadratic in ey, we get
                       ey = 2 1x x  .
Since ey is always positive, we take plus sign before the radical.

Thus,     ey = x + 2 1x    or     y = log  2 1x x 
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Hence,  sinh–1x = log  2 1x x 
13.7.2. For cosh–1x
Let cosh–1 x = y

Then,    x = cosh y = 2 1
2 2

y y y
y

e e e
e

 
     e2y – 2xey + 1 = 0
                  ey = x ± 2 2 21 1, 1x x x x x     
or                   y = log  2 1x x 
The convention is to take plus sign before the radical.

Thus,        cosh–1 x = log  2 1x x 
13.7.3. For tanh–1x
Let tanh–1x = y

Then,     x = tanh y  = y y
y y

e e
e e







                21 2
1 2

y yy
x e ex e

         or        y = 1 1log2 1
x
x




Thus,           tanh–1x = 1 1log2 1
x
x




13.8. COMPLETE LOGARITHMIC FUNCTIONS
Def. If  = ex where  and x are real, we know that x is called the logarithm of to the base e.
We now extend this definitions to complex quantities.
If u = ex, where u and z are complex, then z is called a logarithm of u to the base

e.
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But  u = ez = ez.eni ( e2i = cos 2n + i sin 2n = 1)
        = ez+2n.
 z + 2n is also a logarithm of u to the base e.
The logarithm of of u is thus a many-valued function. We denote this by writing log

u for the general value.
13.8.1. To find all the values of Log x.
Let  z = x + iy = r(cos  + i sin ), – <  < .
       = r [cos (2n + ) + i sin (2n + )
Where n is any integer, and r and  satisfy the two equations x = r cos , y sin ,

so that  r = 2 2x y  and  = tan–1 y
x

Let log z = u + iv
Then, z = eu+iv = eu (cos v + i sin v)
i.e.   r [cos (2n + ) + i sin (2n + )] = eu (cos v + i sin v)
   eu = r, so that u = log r  and v = 2n + .
Hence,  Log z = u + iv  = log r + i (2n + ).
Thus,   Lot z = 2n + (log r + i), when n is any integer including zero.
Note. The value obtained by putting n equal to zero is called the principal value of

Log z and is denoted by log z, so that
Log x = 2n + log z
Thus, log z = log r + i  i.e. Log (x + iy) = log 2 2 1tan yx y i x 
and Log z = 2ni + (log r + i)
i.e. Log (x + iy) = 2ni + 2 2 1log tan yx y i x    
13.8.2. Laws of Logarithms
If z1 and z2 are any two complex numbers, then
(i) log (z1z2) = log z1 = log z2

(ii) log 1
2

z
z  = log z1 – log z2
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(iii) log z1n = n log z1
These equations are not necessarily true for the principal value. Actually these

relations express that every value of the left side is equal to some value of the right side.
13.8.3. The logarithm of a positive real number.

We have log (x + iy) = 2ni + 2 2 1log tan yx y i x    
Put y = 0
We get Log x = 2ni + log x
Thus, Log x has one real value viz. log x.
which is the ordinary logarithm of x.
Hence, every positive real number has a real logarithm, which is its ordinary logarithm.
Note : It may be noted that the principal value of the logarithm of a +ve real number

is equal to its ordinary logarithm.
13.8.4. The logarithm of a negative real number.
We have
Lot (x + iy) = 2ni + (log r + i) where x = r cos  y = r sin  – <  < .
Put y = 0 and x = – where  is positive.
With these substitutions we obtain r =  sin  = , such that
       Log (–) = 2ni + log  + i.
Hence, (a) Log (–) has no real value,
and (b) the principal value of Log is log  + i   i.e. log (–) = log  + i
13.8.5. Example. Find all the values of Log (1 + i).
Solution. Let 1 + i = r (cos  + i sin )

Then, r cos  = 1 and r cos  = 1, giving r = 2 and  = 4


  Log (1 + i) = 2ni + log r + i
                 = 2ni + log 2 4i  
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                 = 1 log 2 22 4i n      
13.8.6. Example. Resolve log cos (x + iy) into its real and imaginary parts.
Solution. cos (x + iy) = cos x cosh y – i sin x sinh y
                        =  + i, where  = cos x cosh y
and                   = –sin x sinh y.
Now 2 + 2 = cos2x cosh2y + sin2 x sinh2y
1 cos2 1 cosh 2 1 cos 2 cosh 2 1

2 2 2 2
x y x y       = 1 (cos2 cosh 2 )2 x y ,

and                                          tan tanhx y  
   Log cos (x + iy) = Log ( + i)

                        = 2 2 12 log tann i i        

                        = 11 cos2 cosh 22 log tan (tan tanh )2 2
x yn i i x y  

Note. The method is that we write cos (x + iy) in the form ,  and then use
formula for Log ( + ).

These equations give r = 1 and 0 = 2
 .

             log (–i) = log r + i = log 1 2 i  = 2 i .
Note : Here we had to find the principal value of the logarithm of –i.

13.9. EXAMINATION ORIENTED EXERCISE
Evaluate
1. Log (–3)
2. Log i
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3. Log (–5)
Resolve into real and imaginary parts.

4. Log sin (x + iv)
5. log cos (x + iv)
6. log (–1)

Prove that
7. log (x + iy) = log (x2 + y2) + i tan–1 y

x .

8. log 12 tana ib bia ib a 
13.10. THE GENERAL EXPONENTIAL FUNCTION

We know that when a and x are real ax = exlog a
We take this as the definition of the general exponential function az. when a and z

are complex.
Thus, if a and z are complex
                           az = ez log a
Now, log a is many valued and so az is also many-valued.
We have  az = ezlog a = ez = ez(2n + i log a)
The value of a2 obtained by putting n equal to zero is called its principal value.
13.10.1. The general logarithmic function.
Suppose a and z are complex.
         a2 = w, then z is called a logarithm of w to the base a and we write,
           z = Logaw.
13.10.2. Base-changing formula.
Let  a2 = w
Then, eloga = w
   z Log a = Logew
But z = Logew                     Logaw. Logea = Logew
or,                           Logaw. = Logew/Log ea.
13.10.3. Example. Separate ( + i)x+iy into real and imaginary parts.
Solution.  ( + i)x+iy = e(x + iy) Log( + )
                        = e(x + iy) (2ni + Log r + i)
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where r = 2 2    and  = tan–1 
e{x log r – y( + 2x)} + i {y log r + x ( + 2n)}
          = eu+iv, where u = x log r – y( + 2n)
and    v = y log r – x( + 2n)
          = eu.ei
          = eu(cos v + i sin v)

13.11. EXAMINATION ORIENTED EXERCISE
Prove that

1. ia = cos (4m + 1) sin(4 1)2 2
a nai m   .

2. If (1 )
(1 )

p qi
p qi

i ii



      then one value of tan–1   is p + q log 2.
3. If ii ..........to =  + i, principal values only being considered, then

tan 2 2 BA B and A B2 A e   
4. If a+i + (x + iy)p+qi, principal values only being considered, then

      x = 2 2 10
1 log ( ) tan log2 a

yp x y q ex  .

and log (x2 + y2) = 2 22 p q
p q
  

 .
5. Prove that the principal value of (a + ib)+ is wholly real or wholly imaginary

according as  log (a2 + b2) +  tan–1 b
a  is an even or an odd multiple of 2

 .
13.12. SUGGESTED READING

The students are advised to go through following references for details.
13.13. REFERENCES

(1) Functions of a Complex Variables by Goyal and Gupta, Pragati Prakashan,
Meerut.
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(2) Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser,
2006.

(3) A text Book of Real and Complex Analysis by Sunil Gupta, Udhay Banu, Ashok
Kumar, Narinder Sharma, Malhotra Brothers, Pacca Danga, Jammu.

(4) James Ward Brown and Ruel V. Churchill, Complex Variables and Applications,
8th Ed., McGraw – Hill International Edition, 2009.

13.14. MODEL TEST PAPER
Separate into real and imaginary parts :
1. cos ( + i)
2. cot ( + i)
3. sec ( + i)
4. cosec ( + i)
5. sinh ( + i)
6. sinh  sin  + i cosh  cos  = i cos (a + i)
7. sin 2 + i sinh 2 = 2 sin (a + i) cos (a – i)
8. cos ( + i) + i sin ( + i) = e– (cos  + i sin )

9. If sin (A + B) = x + iy, then 2 2
2 2 1cosh B sinh B

x y 

10. If x + iy cosh (u + iv), then 2 2
2 2 1cos sin

x y
v v    and 2 2

2 2 1cosh sinh
x y

u u  .
11. Evaluate log (– 1).

12. Prove that log (– i) = 2 i

*********
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B.A. SEM–IV MATHEMATICS LESSON No. 14
SUMMATION OF SERIES

14.1. Introduction :  In this lesson the concept of summation of n terms of
trigonometric series is discussed.
14.2 Objectives : Objective of studying this lesson is to explain the summation  of n
terms of trigonometric series.
14.3. To find the sum of a series of sines or consines of angles in A.P.

Let us find the sum to n terms of the following series
sin + sin ( + ) + sin ( + 2) + ................
The angles are in A.P. their common differences being .

Multiplying each term by 2 sin 2
  we have

                   2sin sin cos cos2 2 2
                 

             32sin( )sin cos cos2 2 2
                   

           3 52sin( 2 )sin cos cos2 2 2
                   

.......................................................................

.......................................................................

        2sin( 1 )sin cos 2 3 cos 2 12 2 2n a n a n                    
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If S denote the sum to n terms, we have by addition

                     2sin .S cos cos 2 12 2 2a a n               

                              = 2sin 1 sin2 2
na n      

                          S = 
sin 1 sin2 2

sin 2

na n      

Let us now find the sum of the series
                   cos  + cos ( + ) + ...........to n terms.

Again multiplying each term by 2 sin 2
 , we have

                2cos sin sin sin2 2 2
                 

           32cos( )sin sin sin2 2 2
                   

          5 32cos( 2 )sin sin sin2 2 2
                   

          .....................................................................
.....................................................................

      2cos( 1 )sin sin 2 1 sin 2 32 2 2n n n                      
If S denote the sum to n terms, we have by addition

                   2sin S sin 2 1 sin2 2 2n                  
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                          = 2cos 1 sin2 2
nn       

                         S = 
cos 1 sin2 2

sin 2

nn        .

14.3.1. Example. Sum to n terms the series :
                             sin x + sin 2x + sin 3x + ..........
Solution. Here  = x and  = x

               S = 
sin 1 sin2 2

sin 2

x nxx n
x

    

= 
sin( 1) sin2 2

sin 2

x nxn
x

 

14.3.2. Example. Sum to n terms the series :
3 5cos cos cos ...........2 2 2n n n

    

Solution. Here and2n n
    

_                       S = 
cos 1 sin2 2 2

sin 2

n nn n n
n

         = 
cos sin2 2 0

sin 2n

  

14.3.3. Example. Sum to n terms the series :
cos2x + cos22x + cos2 3x + ..............
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Solution.   cos2x = 1 cos2
2

x

cos22x = 1 cos4
2

x

cos23x = 1 cos6
2

x

...........................

...........................

      S = 1 1 1(1 cos2 ) (1 cos 4 ) (1 cos6 ) .......2 2 2x x x      to n terms.

          = 1 (cos2 cos4 cos6 ........to terms)2 2
n x x x n   

          = 1 cos(2 1 )sin
2 2 sin
n x n x nx

x
  

          = cos( 1) sin
2 2sin
n n x nx

x
 .

14.4. EXAMINATION ORIENTED EXERCISES
Sum up the following series upto n terms :
1. sin x + sin (x – y) + sin (x – 2y) + .........
2. cos x + cos 2x + cos 3x +  .........
3. sin  – sin ( + ) + sin ( + 2) – sin ( + 3) + .........
4. cos x – cos (x + y) + cos (x + 2y) – cos (x + 3y) + ......... .
5. sin x cos x + sin 2x cos2x + sin 3x cos 3x + ............
6. cos2 – cos2( + ) + cos2 ( + 2) – cos2 ( + 3) + .........
7. sin2x + sin22x + sin2 3x + ............... .
8. cos3 + cos33 + cos35 + ......... .
9. sin3 – sin3( + ) + sin3( + 2) + ............
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10. sin  sin 2 + sin 2 sin 3 + sin 4 + ........... .

11. Prove cos 3 5 7 9 1cos cos cos cos11 11 11 11 11 2
        

12. sinh u + sinh (u + v) + sinh (u + 2v) + ................
13. cosh a + cosh (a + b) + cosh (a + 2b) + ............. .

14.5. METHOD OF DIFFERENCE
14.5.1. Formulaes

cosec  = cot cot2
  

tan  = cot  – 2 cot 2.
tan  sec 2 = tan 2 – tan 
cosec  cosec ( + ) = cosec  [cot  – cot ( + )]
sec  sec ( + ) = cosec  [tan ( + ) – tan ]
tan2 tan 2 = tan 2 – 2 tan 
sin3 = 1 (3sin sin 3 )4   

cos3 = 1 (3cos cos3 )4   
tan  tan ( + ) = cot  [tan ( + ) – tan ] – 1
14.5.2. Example. Sum the series
        cosec  + cosec 2 + cosec 4 + ..........+ cosec 2n–1.

Solution. cosec  + cot  = 1 cos
sin sin

 
                             = 1 cos

sin
 



                             = 
22cos 2

2sin cos2 2
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                             = cot 2


         cosec  = cot cot2
  

          cosec 2 = cot  – cot 2
          cosec 4 = cot 2 – cot 22
           .............................................
       cosec 2n–1 = cosec 2n–2 – cosec 2n–1
Adding up, we get

                  S = 1cot cot 22 n  
14.5.3. Example. Sum up to n terms the series :
                    tan  + 2 tan 2 + 22 tan 22 + .....................

Solution.   tan  – cot  = sin cos
cos sin

  

                            = 2 2sin cos
sin cos
  
 

                            = cos2
1 sin 22
 


                   tan  = cot  – 2 cot 2
                    tan 2 = cot 2 – 2 cot 22
                   tan 22 = cot 22 – 2 cot 23
                    ...............................................

      tan 2n–1 = cot 2n–1 – cot 2n
Multiplying by 1, 2, 22, ........2n–1 successively and adding we get
                          S = cot  – 2n cot 2n .



191

14.5.4. Example. Sum the series :

              tan–1 1 12 2 2
1 1 1tan tan ...to terms1 1 1 1 2 2 1 3 3 n        

Solution. Now T1 = tan–1 1 12
1 1 2 1tan tan1 2 1 2.11 1 1

     

              T1 = tan–1 2 – tan–11            1 1 1tan tan tan1
x y x yxy       

Also            T2 = tan–1 1 12
1 1 3 2tan tan1 6 1 3.21 2 2

     
              T2 = tan–1 3 – tan–1 2
Similarly        T3 = tan–1 4 – tan–1 3
                 ......................................
                Tn = tan–1 (n + 1) – tan–1n
Adding vertically and cancelling like terms, we get
           Sn = T1 + T2 + T3 + ...............+ Tn = tan–1 (n + 1) – tan–1 1

              = tan–1 1( 1) 1 tan1 ( 1) 1 2
n n

n n          .

14.5.5. Example.  1 1 1 ....cos cos3 cos cos5 cos cos7          

Solution.  Here T1 = 1
cos cos3  

                     = 1 1 sin
2cos2 cos 2sin cos 2 cos

        

                     = cosec sin(2 )
2 cos2 cos
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                     = cosec sin 2 cos cos2 sin
2 cos2 cos

         

                     = cosec sin 2 cos cos2 sin
2 cos 2 cos cos2 cos

          

                     =  cosec tan 2 tan2
   

               T1 = 1
cos cos3    =  cosec tan 2 tan2

   

Similarly  T2 = 1
cos cos5    =  cosec tan3 tan 22

   

          T3 = 1
cos cos7    =  cosec tan 4 tan32

   
          .......................................................................................

          Tn = 1
cos cos(2 1)n     =  cosec tan( 1) tan2 n n    

[nth term of 3, 5, 7, ...= 3 + (n – 1) × 2 = 2n + 1]
Adding vertically, we get the required sum

                             =  cosec tan( 1) tan2 n    

                             =  1 cosec tan( 1) tan2 n     .
14.6. EXAMINATION ORIENTED EXERCISES

Sum the following series to n terms :

1. 2cosec cosec cosec .........2 2
    

2. cosec  cosec 2 + cosec 2 cosec 3 + cosec 3 cosec 4 + .......
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3. tan  sec 2 + tan 2 sec 4 + tan 4 sec 8 + ........

4. 3 3 2 32 3sin 3sin 3 sin ...........3 3 3
    

5. sin sin sin .........sin 2 sin3 sin3 sin 4 sin 4 sin5
         

6. 1 1 1 .........cos cos3 cos cos5 cos cos7          
7. tan  tan 2 + tan 2 tan 4 + tan 3 tan 8 +..........

8. 1 1 12 2 2
1 1 1tan tan ...... tan1 1 1 1 2 2 1 n n

         

9. 1 21
1tan 3 3

n
k k k




     .

10. tan–1 1 11 1 1tan tan ........3 7 13   

11. 1 1 14 6 8tan tan tan ........1 3 4 1 8 9 1 15 16         

12. tan–1 1 11 2 4tan tan ...........3 9 33   

13. tan x + 2 2
1 1tan tan ............2 2 2 2

x x
14.7. C + iS METHOD

List of some standard series.
Following formulaes will help students to solve C + iS method.

1.  (1 – x)–n = 1 + nx + 2 3( 1) ( 1)( 2) .........2! 3!
n n n n nx x   
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2.  (1 – x)n = 1 – nx + 2 3( 1) ( 1)( 2) .........2! 3!
n n n n nx x   

3.  (1 + x)–n = 1 – nx + 2 3( 1) ( 1)( 2) ........2! 3!
n n n n nx x   

4.  (1 + x)–1/2 = 1 – 2 31 1 3 1 3 5 ........2 2 4 2 4 6x x x     

5.  1/ 2 2 31 3 1 3 5(1 ) 1 ......2 2 4 2 4 6x x x x         

6.  ex = 1 + x + 2 3 4 ........2! 3! 4!
x x x  

7.  e– x = 1 – x + 2 3 4 ...........2! 3! 4!
x x x  

8.  cosh x = 1 + 2 4 .......2! 4!
x x 

9.  sin h x = 3 5 .........3! 5!
x x 

10.  cos x = 2 41 ........2! 4!
x x  

11.  sin x = 3 5 ..........3! 5!
x xx   

12.  tan x = 3 52 ........3 15
x xx   

13.  log (1 + x) = 2 3 .........2 3
x xx   

14.  log (1 – x) = 
2 3 4 ........2 3 4

x x xx       
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15.  

16.  tan–1 x = x – 
The method of summation will be illustrated with the help of an example.
14.7.1. Example. Sum to n terms, and to infinity, the series
                        1 + c cos  + c2 cos 2 + ........... ,
where c is less than one numerically.
Solution. Let
             C = 1 + c cos  + c2 cos 2 + .........   + cn–1 cos (n –1)
and          S = c sin  + c2 sin 2 + ........+ cn – 1 sin (n – 1).
Then,  C + iS = 1 + ce + c2 e2i + ......+cn–1 e(n–1)i

                = , bysumming the G.P..
Now, we separate the right-hand expression into real and imaginary parts.

     

                =

Hence, by equating real and imaginary parts, we get

              C = 
As n  , cn and cn+1  0
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             Sum to infinity = 2
1 cos

1 2 cos
c

c c
 

  
Note. It may be noted that there are main steps in the process.
1. Forming C + i S.
2. Find the sum of the resulting G.P.
3. Resolving the sum into real and imaginary
14.7.2. Example. Sum the series to infinity.

                      S = 1 1 3 1 3 5sin sin 2 sin3 .....2 2 4 2 4 6
         

Solution. Let       C = 1 1 3 1 3 5cos cos2 cos3 ........2 2 4 2 4 6
         

Then,         C + iS = 2 31 1 3 1 3 5 .....to infinite2 2 4 2 4 6i i ie e e        

                      = 
1
2(1 )ie   by the Binomial theorem

                      =   1
21 (cos sin )i    

                      =   1
21 cos sini    

                      = 
1
222sin 2 sin cos2 2 2i

     

                      = 
11
222sin cos sin2 2 2 2 2i

                         

                      = 1 cos sin4 42sin 2
i         
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 Equating imaginary parts, we get

                      S = 1 .sin 42sin 2

  


14.7.3. Example. Sum to infinity the series :

                  C = 1 1cos cos( 2 ) cos( 4 ) ...... to3! 5!          

Solution. Let    S = 1 1sin sin( 2 ) sin( 4 ) ........to3! 5!          

Then,        ( 2 ) ( 4 )1 1C S ....to3! 5!i i ii e e e         

                    = 3 51 1 ......... to3! 5!
i i ii

e e e ee
   
      

                    = ( ) sin ,i ie e  using the series for sin z
       = ( ) sin(cos sin )ie i    
       = [cos( ) sin( )]i        sin(cos )cosh(sin ) cos(cos )sinh(sin )i    
 Equating real part, we gfet
             C =  cos( )sin(cos )cosh(sin ) sin( )cos(cos )sinh(sin )          
14.7.4. Example. Find the sum to infinity of the series :

             1 1 3 1 3 51 cos cos2 cos3 ....2 2 4 2 4 6
          

Solution. Let C = 1 – 1 1 3 1 3 5cos cos2 cos3 ...2 2 4 2 4 6
          

       S = 0 – 1 1 3 1 3 5sin sin 2 sin 3 .....2 2 4 2 4 6
          



198

   C + iS = 1 – 2 31 1 3 1 3 5 ....2 2 4 2 4 6i i ie e e         

           2 3
1 1 1 1 11 1 21 2 2 2 2 21 ...2 2 3i i ie e e  

                                   
           1/2 1/2(1 ) (1 cos sin )ie i        

           
1/2 1/2 1/222cos 2 sin cos 2cos cos sin2 2 2 2 2 2i i
                         

           
1
222cos cos sin2 4 4i

            
Equating real parts.
14.7.5. Example. Sum the series :

               
2 3cos cos1 cos cos cos 2 cos3 ...2 3
         

Solution. Let C = 
2 3cos cos1 cos cos cos2 cos3 ...2 3
         

               S = 
32cos cos0 cos sin sin sin 3 ...2 3

          

       C + iS = 
2cos1 cos (cos sin ) (cos2 sin 2 )2i i        

3cos (cos3 sin3 ) ....3 i     

                  = 
2 32 3cos cos1 cos ....2 3i i ie e e         
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                  = 
2 31 .... , cos2 3 iz zz z e       

                  = cos cos (cos sin ).z i ie e e e        
                  = cos cos cos sin. ie e     

                  =  cos cos cos(cos sin ) sin(cos sin )e i       
Equating real parts,
               C = cos cos .cos(cos sin )e     .

14.8. EXAMINATION ORIENTED EXERCISES
Sum the series

1. 2
1 1sin sin 2 sin3 ..........2 2      to infinity..

2. 2sin sin( ) sin( 2 ) ....c c           to n terms & to .
3. sin sec + sin 2 sec2 + sin 3 sec3 + ..........to n terms.
4. cos  cos  + cos3 cos 3 + cos5 cos  + .........to n terms.

5. 2
1 1cos cos 2 cos3 ....3 3      to n terms.

6. 1 1 3sin sin3 sin5 .....to2 2 4
      

7. 2 3cos cos1 cos cos cos2 cos3 ...to2! 3!
         

8. sin  + x sin ( + ) + x2 sin ( + 2) + .........to n terms

9. 1 1 3 1 3 51 cos cos 2 cos3 ....to2 2 4 2 4 6
           

10. 2sin cos 2 sin cos3cos ....... to1! 2!
      



14.9. SUGGESTED READING
 The students are advised to go through following references for details.

14.10. REFERENCES
(1) Functions of a Complex Variables by Goyal and Gupta, Pragati Prakashan,

Meerut.
(2) Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser,

2006.
(3) A text Book of Real and Complex Analysis by Sunil Gupta, Udhay Banu, Ashok

Kumar, Narinder Sharma, Malhotra Brothers, Pacca Danga, Jammu.
(4) James Ward Brown and Ruel V. Churchill, Complex Variables and Applications,

8th Ed., McGraw – Hill International Edition, 2009.
14.11. MODEL TEST PAPER

Q.1. Find the sum to infinity of the series
1 1 3 1 3 51 cos . cos2 . . cos3 ............2 2 4 2 4 6      

Q.2. Find the sum to infinity S = 3 51 1sin sin 3 sin 5 ..........3 5x x x     

Q.3. Find the sum to infinity S = 2 sin ( 2 )sin sin ( ) .......2!x x         

Q.4. Find the sum to infinity S = 2 3cos cos 2 cos3 .........2 3
c cc      
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